Author:
Kamioka Takahiro,Suzuki Hiromu C.,Ugajin Atsushi,Yamaguchi Yuta,Nishimura Masakazu,Sasaki Tetsuhiko,Ono Masato,Kawata Masakado
Abstract
AbstractBackgroundThe Japanese honeybee,Apis cerana japonica, shows a specific defensive behavior, known as a “hot defensive bee ball,” used against the giant hornet,Vespa mandarinia. Hundreds of honeybee workers surround a hornet and make a “bee ball” during this behavior. They maintain the ball for around 30 min, and its core temperature can reach 46. Although various studies have been conducted on the characteristics of this behavior, its molecular mechanism has yet to be elucidated. Here, we performed a comprehensive transcriptomic analysis to detect candidate genes related to balling behavior.ResultsThe expression levels of differentially expressed genes (DEGs) in the brain, flight muscle, and fat body were evaluated during ball formation and incubation at 46 °C. The DEGs detected during ball formation, but not in response to heat, were considered important for ball formation. The expression of genes related to rhodopsin signaling were increased in all tissues during ball formation. DEGs detected in one or two tissues during ball formation were also identified.ConclusionsGiven that rhodopsin is involved in temperature sensing inDrosophila, the rhodopsin-related DEGs inA. cerana japonicamay be involved in temperature sensing specifically during ball formation.
Publisher
Springer Science and Business Media LLC
Reference78 articles.
1. Abrol DP. Diversity of pollinating insects visiting litchi flowers (Litchi chinensis Sonn.) and path analysis of environmental flowers influencing foraging behavior of four honeybee species. J Apicultural Res. 2006;45:180–7.
2. Abrol DP. Defensive behavior of Apis cerana F. against predatory wasp. J Apicultural Sci. 2006;50:39–46.
3. Alaux C, Crauser D, Pioz M, Saulnier C, Le Conte Y. Parasitic and immune modulation of flight activity in honey bees tracked with optical counters. J Exp Biol. 2014;217:3416–24.
4. Ardia DR, Gantz JE, Schneider BC, Strebel S. Costs of immunity in insects: an induced immune response increases metabolic rate and decreases antimicrobial activity. Funct Ecol. 2012;26:732–9.
5. Arca M, Papachristoforou A, Mougel F, Rortais A, Monceau K, Bonnard O, et al. Defensive behaviour of Apis mellifera against Vespa velutina in France: testing whether European honeybees can develop an effective collective defence against a new predator. Behav Processes. 2014;106:122–9.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献