Abstract
Abstract
Background
Marine invertebrates are abundant and diverse on the continental shelf in Antarctica, but little is known about their parasitic counterparts. Endoparasites are especially understudied because they often possess highly modified body plans that pose problems for their identification. Asterophila, a genus of endoparasitic gastropod in the family Eulimidae, forms cysts in the arms and central discs of asteroid sea stars. There are currently four known species in this genus, one of which has been described from the Antarctic Peninsula (A. perknasteri). This study employs molecular and morphological data to investigate the diversity of Asterophila in Antarctica and explore cophylogenetic patterns between host and parasite.
Results
A maximum-likelihood phylogeny of Asterophila and subsequent species-delimitation analysis uncovered nine well-supported putative species, eight of which are new to science. Most Asterophila species were found on a single host species, but four species were found on multiple hosts from one or two closely related genera, showing phylogenetic conservatism of host use. Both distance-based and event-based cophylogenetic analyses uncovered a strong signal of coevolution in this system, but most associations were explained by non-cospeciation events.
Discussion
The prevalence of duplication and host-switching events in Asterophila and its asteroid hosts suggests that synchronous evolution may be rare even in obligate endoparasitic systems. The apparent restricted distribution of Asterophila from around the Scotia Arc may be an artefact of concentrated sampling in the area and a low obvious prevalence of infection. Given the richness of parasites on a global scale, their role in promoting host diversification, and the threat of their loss through coextinction, future work should continue to investigate parasite diversity and coevolution in vulnerable ecosystems.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference83 articles.
1. Jones PD. Antarctic temperatures over the present century - a study of the early expedition record. J Clim. 1990;3:1193–203.
2. O’Loughlin PM, Paulay G, Davey N, Michonneau F. The Antarctic region as a marine biodiversity hotspot for echinoderms: Diversity and diversification of sea cucumbers. Deep Sea Res 2 Top Stud Ocean. 2011;58:264–75.
3. Clarke A, Crame JA. The Southern Ocean benthic fauna and climate change: a historical perspective. Phil Trans Royal Soc Lon B. 1992;338(1285):299–309.
4. Wilson NG, Maschek J, Baker B. A species flock driven by predation? Secondary metabolites support diversification of slugs in Antarctica. PLoS One. 2013;8(11):1–7.
5. Arntz WE, Gutt J, Klages M. Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH, editors. Antarctic communities: species, structure and survival. Cambridge: Cambridge Univ. Press; 1997.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献