Effects of habitat gradient and agro-climatic variation on selected soil physical and chemical properties in the Bale Mountains national park, south-eastern Ethiopia

Author:

Ahmedin Annissa Muhammed,Elias Eyasu

Abstract

Abstract Background Increasing evidence suggests that anthropogenic effects are responsible for drastic changes in landscape patterns and ecosystem services. This study aims to assess the effects of landscape change and agro-climatic variation on selected soil physical and chemical properties in the Bale Mountains national park. A combination of stratified and systematic sampling techniques was employed to draw representative soil samples. A total of 72 soil samples (3 agro-climatic zones × 3 land cover types × 2 habitat gradients × 4 replications = 72) at a depth of 0–20 cm were collected for the soil physical and chemical property analysis. A two-way analysis of variance was conducted to determine the level of variation in soil parameters. Tukey’s honest significance difference (HSD) test was used to compare treatment means at a 0.05 level of significance. Results The results suggest that soil parameters differed significantly (p < 0.05) among agro-climatic zones, land cover, and habitat gradients. The soil pH, SOC, TN, AP, CEC and clay content were significantly higher in the lower altitude, natural vegetation and interior habitat, whereas the soil sand and silt content as well as the soil bulk density were significantly higher in the farmland and edge habitat. Conclusions Conservation and restoration priority should be given to those vegetation types and ecosystems that are highly affected by human interferences such as the grassland in the middle altitude, ericaceous land in the higher altitude, and moist forest in the lower altitudes.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3