Mitochondrial phylogenomics and mitogenome organization in the parasitoid wasp family Braconidae (Hymenoptera: Ichneumonoidea)

Author:

Jasso-Martínez Jovana M.,Quicke Donald L. J.,Belokobylskij Sergey A.,Santos Bernardo F.,Fernández-Triana José L.,Kula Robert R.,Zaldívar-Riverón Alejandro

Abstract

Abstract Background Mitochondrial (mt) nucleotide sequence data has been by far the most common tool employed to investigate evolutionary relationships. While often considered to be more useful for shallow evolutionary scales, mt genomes have been increasingly shown also to contain valuable phylogenetic information about deep relationships. Further, mt genome organization provides another important source of phylogenetic information and gene reorganizations which are known to be relatively frequent within the insect order Hymenoptera. Here we used a dense taxon sampling comprising 148 mt genomes (132 newly generated) collectively representing members of most of the currently recognised subfamilies of the parasitoid wasp family Braconidae, which is one of the largest radiations of hymenopterans. We employed this data to investigate the evolutionary relationships within the family and to assess the phylogenetic informativeness of previously known and newly discovered mt gene rearrangements. Results Most subfamilial relationships and their composition obtained were similar to those recovered in a previous phylogenomic study, such as the restoration of Trachypetinae and the recognition of Apozyginae and Proteropinae as valid braconid subfamilies. We confirmed and detected phylogenetic signal in previously known as well as novel mt gene rearrangements, including mt rearrangements within the cyclostome subfamilies Doryctinae and Rogadinae. Conclusions Our results showed that both the mt genome DNA sequence data and gene organization contain valuable phylogenetic signal to elucidate the evolution within Braconidae at different taxonomic levels. This study serves as a basis for further investigation of mt gene rearrangements at different taxonomic scales within the family.

Funder

Consejo Nacional de Ciencia y Tecnología

Russian Foundation for Basic Research

Russian State Research

GGI Peter Buck Postdoctoral Fellowship

Agriculture and Agri-Food Canada

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3