Resolving the phylogeny of Thladiantha (Cucurbitaceae) with three different target capture pipelines

Author:

Raza Mustafa,Ortiz Edgardo M.,Schwung Lea,Shigita Gentaro,Schaefer Hanno

Abstract

Abstract Background Despite recent advances, reliable tools to simultaneously handle different types of sequencing data (e.g., target capture, genome skimming) for phylogenomics are still scarce. Here, we evaluate the performance of the recently developed pipeline Captus in comparison with the well-known target capture pipelines HybPiper and SECAPR. As test data, we analyzed newly generated sequences for the genus Thladiantha (Cucurbitaceae) for which no well-resolved phylogeny estimate has been available so far, as well as simulated reads derived from the genome of Arabidopsis thaliana. Results Our pipeline comparisons are based on (1) the time needed for data assembly and locus extraction, (2) locus recovery per sample, (3) the number of informative sites in nucleotide alignments, and (4) the topology of the nuclear and plastid phylogenies. Additionally, the simulated reads derived from the genome of Arabidopsis thaliana were used to evaluate the accuracy and completeness of the recovered loci. In terms of computation time, locus recovery per sample, and informative sites, Captus outperforms HybPiper and SECAPR. The resulting topologies of Captus and SECAPR are identical for coalescent trees but differ when trees are inferred from concatenated alignments. The HybPiper phylogeny is similar to Captus in both methods. The nuclear genes recover a deep split of Thladiantha in two clades, but this is not supported by the plastid data. Conclusions Captus is the best choice among the three pipelines in terms of computation time and locus recovery. Even though there is no significant topological difference between the Thladiantha species trees produced by the three pipelines, Captus yields a higher number of gene trees in agreement with the topology of the species tree (i.e., fewer genes in conflict with the species tree topology).

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3