Probabilistic motion pixel detection for the reduction of ghost artifacts in high dynamic range images from multiple exposures

Author:

An Jaehyun,Ha Seong Jong,Cho Nam Ik

Abstract

Abstract This paper presents an algorithm for compositing a high dynamic range (HDR) image from multi-exposure images, considering inconsistent pixels for the reduction of ghost artifacts. In HDR images, ghost artifacts may appear when there are moving objects while taking multiple images with different exposures. To prevent such artifacts, it is important to detect inconsistent pixels caused by moving objects in consecutive frames and then to assign zero weights to the corresponding pixels in the fusion process. This problem is formulated as a binary labeling problem based on a Markov random field (MRF) framework, the solution of which is a binary map for each exposure image, which identifies the pixels to be excluded in the fusion process. To obtain the ghost map, the distribution of zero-mean normalized cross-correlation (ZNCC) of an image with respect to the reference frame is modeled as a mixture of Gaussian functions, and the parameters of this function are used to design the energy function. However, this method does not well detect faint objects that are in low-contrast regions due to over- or under-exposure, because the ZNCC does not show much difference in such areas. Hence, we obtain an additional ghost map for the low-contrast regions, based on the intensity relationship between the frames. Specifically, the intensity mapping function (IMF) between the frames is estimated using pixels from high-contrast regions without inconsistent pixels, and pixels out of the tolerance range of the IMF are considered moving pixels in the low-contrast regions. As a result, inconsistent pixels in both the low- and high-contrast areas are well found, and thus, HDR images without noticeable ghosts can be obtained.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Information Systems,Signal Processing

Reference33 articles.

1. Debevec PE, Malik J: Recovering high dynamic range radiance maps from photographs. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’97). Los Angeles; Aug 1997:369-378.

2. Reinhard E, Ward G, Pattanaik S, Debevec P: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (The Morgan Kaufmann Series in Computer Graphics). Morgan Kaufmann, San Francisco; 2005.

3. Mann S, Picard R, Mann S, Picard RW: On being ‘undigital’ with digital cameras: extending dynamic range by combining differently exposed pictures. In Proceedings of the 48th IS&T’s Annual Conference. Washington, DC; May 1995:442-448.

4. Devlin K: A review of tone reproduction techniques. Technical report CSTR-02-005. Department of Computer Science, University of Bristol; 2002.

5. Goshtasby AA: Fusion of multi-exposure images. Image Vis. Comput 2005, 23(6):611-618. 10.1016/j.imavis.2005.02.004

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3