Author:
Yu Xiaoyuan,Wang Jiangping,Kays Roland,Jansen Patrick A,Wang Tianjiang,Huang Thomas
Abstract
Abstract
Image sensors are increasingly being used in biodiversity monitoring, with each study generating many thousands or millions of pictures. Efficiently identifying the species captured by each image is a critical challenge for the advancement of this field. Here, we present an automated species identification method for wildlife pictures captured by remote camera traps. Our process starts with images that are cropped out of the background. We then use improved sparse coding spatial pyramid matching (ScSPM), which extracts dense SIFT descriptor and cell-structured LBP (cLBP) as the local features, that generates global feature via weighted sparse coding and max pooling using multi-scale pyramid kernel, and classifies the images by a linear support vector machine algorithm. Weighted sparse coding is used to enforce both sparsity and locality of encoding in feature space. We tested the method on a dataset with over 7,000 camera trap images of 18 species from two different field cites, and achieved an average classification accuracy of 82%. Our analysis demonstrates that the combination of SIFT and cLBP can serve as a useful technique for animal species recognition in real, complex scenarios.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Information Systems,Signal Processing
Reference18 articles.
1. Committee on Grand Challenges in Environmental Sciences NRCUC: Grand Challenges in Environmental Sciences. National Academies Press, Washingthon, DC; 2001.
2. Porter J, Arzberger P, Braun H, Bryant P, Gage S, Hansen T, Hanson P, Lin C, Lin F, Kratz T, Williams T, Shapiro S, King H, Michener W: Wireless sensor networks for ecology. BioScience 2005, 55(7):561-572. 10.1641/0006-3568(2005)055[0561:WSNFE]2.0.CO;2
3. Kays R, Tilak S, Kranstauber B, Jansen P, Carbone C, Rowcliffe M, Fountain T, Eggert J, He Z: Monitoring wild animal communities with arrays of motion sensitive camera traps. Int J Res Rev Wireless Sensor Netw 2011, 1: 19-29.
4. Aguzzi J, Costa C, Fujiwara Y, Iwase R, Menesatti P, Ramirez-E Llorda: A novel morphometry-based protocol of automated video-image analysis for species recognition and activity rhythms monitoring in deep-sea fauna. Sensors 2009, 9(11):8438-8455. 10.3390/s91108438
5. Fegraus E, Lin K, Ahumada J, Baru C, Chandra S, Youn C: Data acquisition and management software for camera trap data: a case study from the TEAM Network. Ecol. Inform 2011, 6(6):345-353. 10.1016/j.ecoinf.2011.06.003
Cited by
166 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献