Abstract
Abstract
Background
Echinococcosis is a global zoonotic parasitic disease caused by Echinococcus larvae. This disease is highly endemic in Sichuan Province, China. This study investigates the prevalence and spatial distribution characteristics of human echinococcosis at the township level in Sichuan Province, geared towards providing a future reference for the development of precise prevention and control strategies.
Methods
Human prevalence of echinococcosis was evaluated using the B-ultrasonography diagnostic method in Sichuan Province between 2016 and 2019. All data were collected, collated, and analyzed. A spatial distribution map was drawn to intuitively analyze the spatial distribution features. Eventually, the spatial autocorrelation was specified and local indicators of spatial association (LISA) clustering map was drawn to investigate the spatial aggregation of echinococcosis at the township level in Sichuan Province.
Results
The prevalence of echinococcosis in humans of Sichuan Province was 0.462%, among which the occurrence of cystic echinococcosis (CE) was 0.221%, while that of alveolar echinococcosis (AE) was 0.244%. Based on the results of the spatial distribution map, a predominance of echinococcosis in humans decreased gradually from west to east and from north to south. The Global Moran’s I index was 0.77 (Z = 32.07, P < 0.05), indicating that the prevalence of echinococcosis in humans was spatially clustered, exhibiting a significant spatial positive correlation. Further, the findings of local spatial autocorrelation analysis revealed that the “high–high” concentration areas were primarily located in some townships in the northwest of Sichuan Province. However, the “low–low” concentration areas were predominantly located in some townships in the southeast of Sichuan Province.
Conclusions
Our findings demonstrated that the prevalence of echinococcosis in humans of Sichuan Province follows a downward trend, suggesting that the current prevention and control work has achieved substantial outcomes. Nevertheless, the prevalence in humans at the township level is widely distributed and differs significantly, with a clear clustering in space. Therefore, precise prevention and control strategies should be formulated for clusters, specifically strengthening the “high–high” clusters at the township level.
Graphic Abstract
Funder
Sichuan Science and Technology Plan Project
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine
Reference56 articles.
1. Eckert J, Gemmell MA, Meslin FX, Pawlowski ZS. WHO/OIE manual on echinococcosis in humans and animals: a public health problem of global concern. Vet Parasitol. 2001;31(14):1717–8.
2. Lei ZL, Wang LY. Control situation and primary task of key parasitic diseases in China. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2012;30(1):1–5 (in Chinese).
3. Jenkins DJ, Romig T, Thompson RCA. Emergence/re-emergence of Echinococcus spp.—a global update. Int J Parasit. 2005;35(11–12):1205–19.
4. Thompson RC, McManus DP. Towards a taxonomic revision of the genus Echinococcus. Trend Parasitol. 2002;18(10):452–7.
5. Xiao N, Qiu JM, NaKao M, Li TY, Chen XW, et al. Biological features of a new Echinococcus species (Echinococcus shiquicus) in the east of Qinghai-Tibet Plateau. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2008;26(4):307–12 (in Chinese).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献