Three Gorges Dam: the changing trend of snail density in the Yangtze River basin between 1990 and 2019

Author:

Gong Yanfeng,Tong Yixin,Jiang Honglin,Xu Ning,Yin Jiangfan,Wang Jiamin,Huang Junhui,Chen Yue,Jiang Qingwu,Li Shizhu,Zhou Yibiao

Abstract

Abstract Background The area of Oncomelania hupensis snail remains around 3.6 billion m2, with newly emerging and reemergent habitats continuing to appear in recent years. This study aimed to explore the long-term dynamics of snail density before and after the operation of Three Gorges Dam (TGD). Methods Data of snail survey between 1990 and 2019 were collected from electronic databases and national schistosomiasis surveillance. Meta-analysis was conducted to estimate the snail density. Joinpoint model was used to identify the changing trend and inflection point. Inverse distance weighted interpolation (IDW) was used to determine the spatial distribution of recent snail density. Results A total of 3777 snail survey sites with a precise location of village or beach were identified. For the downstream area, snail density peaked in 1998 (1.635/0.11 m2, 95% CI: 1.220, 2.189) and fluctuated at a relatively high level before 2003, then declined steadily from 2003 to 2012. Snail density maintained lower than 0.150/0.11 m2 between 2012 and 2019. Joinpoint model identified the inflection of 2003, and a significant decreasing trend from 2003 to 2012 with an annual percentage change (APC) being − 20.56% (95% CI: − 24.15, − 16.80). For the upstream area, snail density peaked in 2005 (0.760/0.11 m2, 95% CI: 0.479, 1.207) and was generally greater than 0.300/0.11 m2 before 2005. Snail density was generally lower than 0.150/0.11 m2 after 2011. Snail density showed a significant decreasing trend from 1990 to 2019 with an APC being − 6.05% (95% CI: − 7.97, − 7.09), and no inflection was identified. IDW showed the areas with a high snail density existed in Poyang Lake, Dongting Lake, Jianghan Plain, and the Anhui branch of the Yangtze River between 2015 and 2019. Conclusions Snail density exhibited a fluctuating downward trend in the Yangtze River basin. In the downstream area, the operation of TGD accelerated the decline of snail density during the first decade period, then snail density fluctuated at a relatively low level. There still exists local areas with a high snail density. Long-term control and monitoring of snails need to be insisted on and strengthened. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3