Optimal control strategies of SARS-CoV-2 Omicron supported by invasive and dynamic models

Author:

Rui Jia,Zheng Jin-Xin,Chen Jin,Wei Hongjie,Yu Shanshan,Zhao Zeyu,Wang Xin-Yi,Chen Mu-Xin,Xia Shang,Zhou Ying,Chen Tianmu,Zhou Xiao-NongORCID

Abstract

Abstract Background There is a raising concern of a higher infectious Omicron BA.2 variant and the latest BA.4, BA.5 variant, made it more difficult in the mitigation process against COVID-19 pandemic. Our study aimed to find optimal control strategies by transmission of dynamic model from novel invasion theory. Methods Based on the public data sources from January 31 to May 31, 2022, in four cities (Nanjing, Shanghai, Shenzhen and Suzhou) of China. We segmented the theoretical curves into five phases based on the concept of biological invasion. Then, a spatial autocorrelation analysis was carried out by detecting the clustering of the studied areas. After that, we choose a mathematical model of COVID-19 based on system dynamics methodology to simulate numerous intervention measures scenarios. Finally, we have used publicly available migration data to calculate spillover risk. Results Epidemics in Shanghai and Shenzhen has gone through the entire invasion phases, whereas Nanjing and Suzhou were all ended in the establishment phase. The results indicated that Rt value and public health and social measures (PHSM)-index of the epidemics were a negative correlation in all cities, except Shenzhen. The intervention has come into effect in different phases of invasion in all studied cities. Until the May 31, most of the spillover risk in Shanghai remained above the spillover risk threshold (18.81–303.84) and the actual number of the spillovers (0.94–74.98) was also increasing along with the time. Shenzhen reported Omicron cases that was only above the spillover risk threshold (17.92) at the phase of outbreak, consistent with an actual partial spillover. In Nanjing and Suzhou, the actual number of reported cases did not exceed the spillover alert value. Conclusions Biological invasion is positioned to contribute substantively to understanding the drivers and mechanisms of the COVID-19 spread and outbreaks. After evaluating the spillover risk of cities at each invasion phase, we found the dynamic zero-COVID strategy implemented in four cities successfully curb the disease epidemic peak of the Omicron variant, which was highly correlated to the way to perform public health and social measures in the early phases right after the invasion of the virus. Graphical Abstract

Funder

China Medical Board

Shanghai Jiao Tong University Integrated Innovation Fund

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine

Reference45 articles.

1. WHO. Classification of Omicron (B.1.1.529): SARS-CoV-2 variant of concern. https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern. Accessed 26 Nov 2021.

2. GISAID. Tracking of variants. 2022. https://www.gisaid.org/hcov19-variants/.

3. Guo Q, Ruhan A, Liang L, Zhao X, Deng A, Hu Y, et al. An imported case of BA.2 lineage of Omicron variant COVID-19—Guangdong Province, China, December 28, 2021. China CDC Wkly. 2022;4(5):98–9. https://doi.org/10.46234/ccdcw2022.001.

4. Fan X, Lu S, Bai L, Liu H, Fu J, Jin X, et al. Preliminary study of the protectiveness of vaccination against the COVID-19 in the outbreak of VOC Omicron BA.2—Jilin City, Jilin Province, China, March 3-April 12, 2022. China CDC Wkly. 2022;4(18):377–80.

5. Chen Z, Deng X, Fang L, Sun K, Wu Y, Che T, et al. Epidemiological characteristics and transmission dynamics of the outbreak caused by the SARS-CoV-2 Omicron variant in Shanghai, China: a descriptive study. medRxiv. 2022. https://doi.org/10.1101/2022.06.11.22276273.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3