A novel strategy for screening mutations in the voltage-gated sodium channel gene of Aedes albopictus based on multiplex PCR-mass spectrometry minisequencing technology

Author:

Mu Qunzheng,Zhao Xin,Li Fengfeng,Li Wenyu,Zhou Xinxin,Lun Xinchang,Wang Yiguan,Hua Dongdong,Liu Qiyong,Xiao Di,Meng FengxiaORCID

Abstract

Abstract Background The current prevention and control strategy for Aedes albopictus heavily relies on comprehensive management, such as environmental management and chemical control. However, the wide application of pyrethroids has facilitated the development of insecticide resistance, primarily via mutations in the voltage-gated sodium channel (VGSC) gene. This study aims to develop a novel strategy for detecting mutations in the VGSC gene in Ae. albopictus using multiplex PCR-mass spectrometry (MPCR-MS) minisequencing technology. Methods We established a new strategy for detecting mutations in the VGSC gene in Ae. albopictus using MPCR-MS minisequencing technology. MPCR amplification and mass probe extension (MPE) were first used, followed by single nucleotide polymorphism (SNP) typing mass spectrometry, which allows the simultaneous detection of multiple mutation sites of the VGSC gene in 96 samples of Ae. albopictus. A total of 70 wild-collected Ae. albopictus were used to evaluate the performance of the method by comparing it with other methods. Results Three target sites (1016, 1532, 1534) in the VGSC gene can be detected simultaneously by double PCR amplification combined with matrix-assisted laser desorption ionization–time-of-flight mass spectrometry, achieving a detection limit of 20 fg/μl. We applied this method to 70 wild-collected Ae. albopictus, and the obtained genotypes were consistent with the routine sequencing results, suggesting the accuracy of our method. Conclusions MPCR-MS minisequencing technology provides a sensitive and high-throughput approach to Ae. albopictus VGSC gene mutation screening. Compared with conventional sequencing, this method is economical and time-saving. It is of great value for insecticide resistance surveillance in areas with a high risk of vector-borne disease. Graphical Abstract

Funder

The National Science and Technology Major Project of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3