Feasibility of controlling hepatitis E in Jiangsu Province, China: a modelling study

Author:

Yang Meng,Cheng Xiao-Qing,Zhao Ze-Yu,Li Pei-Hua,Rui Jia,Lin Sheng-Nan,Xu Jing-Wen,Zhu Yuan-Zhao,Wang Yao,Liu Xing-Chun,Luo Li,Deng Bin,Liu Chan,Huang Jie-Feng,Yang Tian-Long,Li Zhuo-Yang,Liu Wei-Kang,Liu Wen-Dong,Zhao Ben-Hua,He Yue,Yin Qi,Mao Si-Ying,Su Yan-Hua,Zhang Xue-Feng,Chen Tian-MuORCID

Abstract

Abstract Background Hepatitis E, an acute zoonotic disease caused by the hepatitis E virus (HEV), has a relatively high burden in developing countries. The current research model on hepatitis E mainly uses experimental animal models (such as pigs, chickens, and rabbits) to explain the transmission of HEV. Few studies have developed a multi-host and multi-route transmission dynamic model (MHMRTDM) to explore the transmission feature of HEV. Hence, this study aimed to explore its transmission and evaluate the effectiveness of intervention using the dataset of Jiangsu Province. Methods We developed a dataset comprising all reported HEV cases in Jiangsu Province from 2005 to 2018. The MHMRTDM was developed according to the natural history of HEV cases among humans and pigs and the multi-transmission routes such as person-to-person, pig-to-person, and environment-to-person. We estimated the key parameter of the transmission using the principle of least root mean square to fit the curve of the MHMRTDM to the reported data. We developed models with single or combined countermeasures to assess the effectiveness of interventions, which include vaccination, shortening the infectious period, and cutting transmission routes. The indicator, total attack rate (TAR), was adopted to assess the effectiveness. Results From 2005 to 2018, 44 923 hepatitis E cases were reported in Jiangsu Province. The model fits the data well (R2 = 0.655, P < 0.001). The incidence of the disease in Jiangsu Province and its cities peaks are around March; however, transmissibility of the disease peaks in December and January. The model showed that the most effective intervention was interrupting the pig-to-person route during the incidence trough of September, thereby reducing the TAR by 98.11%, followed by vaccination (reducing the TAR by 76.25% when the vaccination coefficient is 100%) and shortening the infectious period (reducing the TAR by 50.05% when the infectious period is shortened to 15 days). Conclusions HEV could be controlled by interrupting the pig-to-person route, shortening the infectious period, and vaccination. Among these interventions, the most effective was interrupting the pig-to-person route. Graphic Abstract

Funder

Bill and Melinda Gates Foundation

the Science and Technology Program of Fujian Province

the Xiamen New Coronavirus Prevention and Control Emergency Tackling Special Topic Program

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3