Abstract
Abstract
Background
Plasmodium falciparum-resistance to sulphadoxine-pyrimethamine (SP) has been largely reported among pregnant women. However, the profile of resistance markers to SP dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) in the general population are varied and not frequently monitored. Currently, SP is used as partner drug for artemisinin combination therapy (SP-artesunate) in some sub-Saharan African countries or as a prophylactic drug in intermittent preventive treatment of malaria during pregnancy and infants and in seasonal malaria chemoprevention (SMC). Profiling of P. falciparum-resistant genotypes to SP is dynamic and critical in providing data that would be useful for malaria control programmes. This study assessed the profile of dhfr and dhps genes genotypes among individuals with malaria in Lagos, Nigeria.
Methods
Molecular markers of SP resistance were identified by nested PCR and sequenced among malaria positive dried blood spots (DBS) that were collected from individuals attending health facilities from January 2013 to February 2014 and during community surveys from October 2010 to September 2011 across different Local Government Areas of Lagos State, Nigeria.
Results
A total of 242 and 167 samples were sequenced for dhfr and dhps, respectively. Sequence analysis of dhfr showed that 95.5% (231/242), 96.3% (233/242) and 96.7% (234/242) of the samples had N51I, C59R and S108N mutant alleles, respectively. The prevalence of dhps mutation at codons A437G, A613S, S436A, A581G, I431V and K540E were 95.8% (160/167), 41.9% (70/167), 41.3% (69/167), 31.1% (52/167), 25.1% (42/167), and 1.2% (2/167) respectively. The prevalence of triple mutations (CIRNI) in dhfr was 93.8% and 44.3% for the single dhps haplotype mutation (SGKAA). Partial SP-resistance due to quadruple dhfr-dhps haplotype mutations (CIRNI-SGKAA) and octuple haplotype mutations (CIRNI-VAGKGS) with rate of 42.6% and 22.0%, respectively has been reported.
Conclusions
There was increased prevalence in dhfr triple haplotype mutations when compared with previous reports in the same environment but aligned with high prevalence in other locations in Nigeria and other countries in Africa. Also, high prevalence of dhfr and dhps mutant alleles occurred in the study areas in Lagos, Nigeria five to eight years after the introduction of artemisinin combination therapy underscores the need for continuous monitoring.
Funder
National Research and Development Plan of China
Project of Shanghai Science and Technology Commission
National Sharing Service Platform for Parasite Resources
National Major Science and Technology Projects of China
National Natural Science Foundation of China
Open Project of Key Laboratory of Parasite and Vector Biology, Ministry of Health
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine
Reference54 articles.
1. WHO. Global Report on Antimalarial Drug Efficacy and Drug Resistance: 2000–2010. 2010.
2. FMOH: Federal ministry of health N, PP. le27. National Malaria Control Programme in Nigeria. Annual Report 2005.
3. Uhlemann AC, Krishna S. Antimalarial multi-drug resistance in Asia: mechanisms and assessment. Curr Top Microbiol Immunol. 2005;295:39–53.
4. Wellems TE, Plowe CV. Chloroquine-resistant malaria. J Infect Dis. 2001;184:770–6.
5. Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR. Epidemiology of drug-resistant malaria. Lancet Infect Dis. 2002;2:209–18.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献