Driving role of climatic and socioenvironmental factors on human brucellosis in China: machine-learning-based predictive analyses

Author:

Chen Hui,Lin Meng-Xuan,Wang Li-Ping,Huang Yin-Xiang,Feng Yao,Fang Li-Qun,Wang Lei,Song Hong-Bin,Wang Li-Gui

Abstract

Abstract Background Brucellosis is a common zoonotic infectious disease in China. This study aimed to investigate the incidence trends of brucellosis in China, construct an optimal prediction model, and analyze the driving role of climatic factors for human brucellosis. Methods Using brucellosis incidence, and the socioeconomic and climatic data for 2014–2020 in China, we performed spatiotemporal analyses and calculated correlations with brucellosis incidence in China, developed and compared a series of regression and Seasonal Autoregressive Integrated Moving Average X (SARIMAX) models for brucellosis prediction based on socioeconomic and climatic data, and analyzed the relationship between extreme weather conditions and brucellosis incidence using copula models. Results In total, 327,456 brucellosis cases were reported in China in 2014–2020 (monthly average of 3898 cases). The incidence of brucellosis was distinctly seasonal, with a high incidence in spring and summer and an average annual peak in May. The incidence rate was highest in the northern regions’ arid and continental climatic zones (1.88 and 0.47 per million people, respectively) and lowest in the tropics (0.003 per million people). The incidence of brucellosis showed opposite trends of decrease and increase in northern and southern China, respectively, with an overall severe epidemic in northern China. Most regression models using socioeconomic and climatic data cannot predict brucellosis incidence. The SARIMAX model was suitable for brucellosis prediction. There were significant negative correlations between the proportion of extreme weather values for both high sunshine and high humidity and the incidence of brucellosis as follows: high sunshine, $$r$$ r = −0.59 and −0.69 in arid and temperate zones; high humidity, $$r$$ r = −0.62, −0.64, and −0.65 in arid, temperate, and tropical zones. Conclusions Significant seasonal and climatic zone differences were observed for brucellosis incidence in China. Sunlight, humidity, and wind speed significantly influenced brucellosis. The SARIMAX model performed better for brucellosis prediction than did the regression model. Notably, high sunshine and humidity values in extreme weather conditions negatively affect brucellosis. Brucellosis should be managed according to the “One Health” concept.

Funder

Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3