Seasonality modeling of the distribution of Aedes albopictus in China based on climatic and environmental suitability

Author:

Zheng XueliORCID,Zhong Daibin,He Yulan,Zhou Guofa

Abstract

Abstract Background Aedes albopictus is a highly invasive mosquito species and a major vector of numerous viral pathogens. Many recent dengue fever outbreaks in China have been caused solely by the vector. Mapping of the potential distribution ranges of Ae. albopictus is crucial for epidemic preparedness and the monitoring of vector populations for disease control. Climate is a key factor influencing the distribution of the species. Despite field studies indicating seasonal population variations, very little modeling work has been done to analyze how environmental conditions influence the seasonality of Ae. albopictus. The aim of the present study was to develop a model based on available observations, climatic and environmental data, and machine learning methods for the prediction of the potential seasonal ranges of Ae. albopictus in China. Methods We collected comprehensive up-to-date surveillance data in China, particularly records from the northern distribution margin of Ae. albopictus. All records were assigned long-term (1970–2000) climatic data averages based on the WorldClim 2.0 data set. Machine learning regression tree models were developed using a 10-fold cross-validation method to predict the potential seasonal (or monthly) distribution ranges of Ae. albopictus in China at high resolution based on environmental conditions. The models were assessed based on sensitivity, specificity, and accuracy, using area under curve (AUC). WorldClim 2.0 and climatic and environmental data were used to produce environmental conduciveness (probability) prediction surfaces. Predicted probabilities were generated based on the averages of the 10 models. Results During 1998–2017, Ae. albopictus was observed at 200 out of the 242 localities surveyed. In addition, at least 15 new Ae. albopictus occurrence sites lay outside the potential ranges that have been predicted using models previously. The average accuracy was 98.4% (97.1–99.5%), and the average AUC was 99.1% (95.6–99.9%). The predicted Ae. albopictus distribution in winter (December–February) was limited to a small subtropical-tropical area of China, and Ae. albopictus was predicted to occur in northern China only during the short summer season (usually June–September). The predicted distribution areas in summer could reach northeastern China bordering Russia and the eastern part of the Qinghai-Tibet Plateau in southwestern China. Ae. albopictus could remain active in expansive areas from central to southern China in October and November. Conclusions Climate and environmental conditions are key factors influencing the seasonal distribution of Ae. albopictus in China. The areas predicted to potentially host Ae. albopictus seasonally in the present study could reach northeastern China and the eastern slope of the Qinghai-Tibet Plateau. Our results present new evidence and suggest the expansion of systematic vector population monitoring activities and regular re-assessment of epidemic risk potential.

Funder

National Natural Science Foundation of China

Beijing Science and Technology Planning Project

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3