Uses of mathematical modeling to estimate the impact of mass drug administration of antibiotics on antimicrobial resistance within and between communities

Author:

Olesen Scott W.ORCID

Abstract

Abstract Background Antibiotics are a key part of modern healthcare, but their use has downsides, including selecting for antibiotic resistance, both in the individuals treated with antibiotics and in the community at large. When evaluating the benefits and costs of mass administration of azithromycin to reduce childhood mortality, effects of antibiotic use on antibiotic resistance are important but difficult to measure, especially when evaluating resistance that “spills over” from antibiotic-treated individuals to other members of their community. The aim of this scoping review was to identify how the existing literature on antibiotic resistance modeling could be better leveraged to understand the effect of mass drug administration (MDA) on antibiotic resistance. Main text Mathematical models of antibiotic use and resistance may be useful for estimating the expected effects of different MDA implementations on different populations, as well as aiding interpretation of existing data and guiding future experimental design. Here, strengths and limitations of models of antibiotic resistance are reviewed, and possible applications of those models in the context of mass drug administration with azithromycin are discussed. Conclusions Statistical models of antibiotic use and resistance may provide robust and relevant estimates of the possible effects of MDA on resistance. Mechanistic models of resistance, while able to more precisely estimate the effects of different implementations of MDA on resistance, may require more data from MDA trials to be accurately parameterized. Graphical Abstract

Funder

Greenwall Foundation

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine

Reference74 articles.

1. Evans JR, Solomon AW, Kumar R, Perez Á, Singh BP, Srivastava RM, et al. Antibiotics for trachoma. Cochrane Database Syst Rev. 2019;9(9):CD001860.

2. Porco TC, Gebre T, Ayele B, House J, Keenan J, Zhou Z, et al. Effect of mass distribution of azithromycin for trachoma control on overall mortality in Ethiopian children: a randomized trial. JAMA. 2009;302(9):962–8.

3. Keenan JD, Bailey RL, West SK, Arzika AM, Hart J, Weaver J, et al. Azithromycin to reduce childhood mortality in sub-Saharan Africa. N Engl J Med. 2018;378(17):1583–92.

4. Chandramohan D, Dicko A, Zongo I, Sagara I, Cairns M, Kuepfer I, et al. Effect of adding azithromycin to seasonal malaria chemoprevention. N Engl J Med. 2019;380(23):2197–206.

5. World Health Organization. WHO guideline on mass drug administration of azithromycin to children under five years of age to promote child survival. 2020. https://apps.who.int/iris/handle/10665/333942. Accessed 16 Oct 2021.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3