Author:
Côté Claude H,Bouchard Patrice,van Rooijen Nico,Marsolais David,Duchesne Elise
Abstract
Abstract
Background
Sequential accumulation of M1 and M2 macrophages is critical for skeletal muscle recovery after an acute injury. While M1 accumulation is believed to rely on monocyte infiltration, the mechanisms of M2 accumulation remain controversial, but could involve an infiltrating precursor. Yet, strong depletion of monocytes only partially impairs skeletal muscle healing, supporting the existence of alternative mechanisms to palliate the loss of infiltrating macrophage progenitors. The aims of this study are thus to investigate if proliferation occurs in macrophage subsets within injured skeletal muscles; and to determine if monocyte depletion leads to increased proliferation of macrophages after injury.
Methods
Injury was induced by bupivacaine injection in the tibialis anterior muscle of rats. Blood monocytes were depleted by daily intravenous injections of liposome-encapsulated clodronate, starting 24 h prior to injury. In separate experiments, irradiation of hind limb was also performed to prevent resident cell proliferation. Upon euthanasia, blood and muscles were collected for flow cytometric analyses of macrophage/monocyte subsets.
Results
Clodronate induced a 80%-90% depletion of monocyte but only led to 57% and 41% decrease of M1 and M2 macrophage accumulation, respectively, 2 d following injury. Conversely, the number of M1 macrophages in monocyte-depleted rats was 2.4-fold higher than in non-depleted rats 4 d after injury. This was associated with a 16-fold increase in the number of proliferative M1 macrophages, which was reduced by 46% in irradiated animals. Proliferation of M2 macrophages was increased tenfold by clodronate treatment 4 d post injury. The accumulation of M2 macrophages was partially impaired by irradiation, regardless of monocyte depletion.
Conclusions
M1 and M2 subsets proliferate after skeletal muscle injury and their proliferation is enhanced under condition of monocyte depletion. Our study supports the conclusion that both infiltrating and resident precursors could contribute to M1 or M2 macrophage accumulation in muscle injury.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献