Author:
Zheng Yabing,Wang Lin,Zhang Wei,Xu Hengwei,Chang Xiaotian
Abstract
Abstract
Background
Studies have demonstrated that carbonic anhydrase I (CA1) stimulates calcium salt precipitation and cell calcification, which is an essential step in new bone formation. Our study had reported that CA1 encoding gene has a strong association with rheumatoid arthritis (RA) and ankylosing spondylitis (AS), two rheumatic diseases with abnormal new bone formation and bone resorption in joints. This study investigated the effect of CA1 on joint inflammation and tissue destruction in transgenic mice that over-express CA1 (CA1-Tg).
Methods
CA1-Tg was generated with C57BL/6J mice by conventional methods. CA1-Tg was treated with collagen-II to induce arthritis (CIA). Wild-type mice, CA1-Tg treated with bovine serum albumin (BSA) and transgenic mice over-expressing PADI4 (PADI4-Tg), a gene known to be involved in rheumatoid arthritis, were used as controls. Histochemistry and X-ray radiographic assay were used to examine joint destruction. Western blotting and real time-PCR were used to examine CA1 expression.
Results
CIA was observed in 60% of CA1-Tg, 20% of PADI4-Tg and 20% of wild-type mice after collagen injections. No CIA was found in CA1-Tg mice that received injections of BSA. The arthritic score was 5.5 ± 0.84 in the CA1-Tgs but the score was less than 2 in the injected wild-type mice and the PADI4-Tgs. The thickness of the hind paws in the CA1-Tgs was 3.46 ± 0.11 mm, which was thicker than that of PADI4-Tgs (2.23 ± 0.08 mm), wild-type mice (2.08 ± 0.06 mm) and BSA-treated CA1-Tgs (2.04 ± 0.07 mm). Histochemistry showed obvious inflammation, synovial hyperplasia and bone destruction in the joints of CA1-Tg that was not detected in PADI4-Tgs or wild-type mice. X-ray assays showed bone fusion in the paws and spines of CA1-Tg mice.
Conclusion
Over-expression of CA1 may aggravate joint inflammation and tissue destruction in the transgenic mice.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Reference19 articles.
1. Zhang X, Aubin JE, Inman RD: Molecular and cellular biology of new bone formation: insights into the ankylosis of ankylosing spondylitis. Curr Opin Rheumatol. 2003, 15: 387-393. 10.1097/00002281-200307000-00004.
2. Schett G: Bone formation versus bone resorption in ankylosing spondylitis. Adv Exp Med Biol. 2009, 649: 114-121. 10.1007/978-1-4419-0298-6_8.
3. Grisar J, Bernecker PM, Aringer M, Redlich K, Sedlak M, Wolozcszuk W, Spitzauer S, Grampp S, Kainberger F, Ebner W, Smolen JS, Pietschmann P: Ankylosing spondylitis, psoriatic arthritis, and reactive arthritis show increased bone resorption, but differ with regard to bone formation. J Rheumatol. 2002, 29: 1430-1436.
4. Chen WS, Chen CH, Lin KC, Tsai CY, Liao HT, Wang HB, Chen YK, Yang AH, Chen TC, Chou CT: Immunohistological features of hip synovitis in ankylosing spondylitis with advanced hip involvement. Scand J Rheumatol. 2009, 38: 154-155. 10.1080/03009740802409504.
5. Chang X, Han J, Zhao Y, Yan X, Sun S, Cui Y: Increased expression of carbonic anhydrase I in the synovium of patients with ankylosing spondylitis. BMC Musculoskelet Disord. 2010, 11: 279-10.1186/1471-2474-11-279.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献