A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation

Author:

Kok Dennis,Firkins Paul John,Wapstra Frits H,Veldhuizen Albert G

Abstract

Abstract Background Spinal systems that are currently available for correction of spinal deformities or degeneration such as lumbar spondylolisthesis or degenerative disc disease use components manufactured from stainless steel or titanium and typically comprise two spinal rods with associated connection devices (for example: DePuy Spines Titanium Moss Miami Spinal System). The Memory Metal Spinal System of this study consists of a single square spinal rod made of a nickel titanium alloy (Nitinol) used in conjunction with connecting transverse bridges and pedicle screws made of Ti-alloy. Nitinol is best known for its shape memory effect, but is also characterized by its higher flexibility when compared to either stainless steel or titanium. A higher fusion rate with less degeneration of adjacent segments may result because of the elastic properties of the memory metal. In addition, the use of a single, unilateral rod may be of great value for a TLIF procedure. Our objective is to evaluate the mechanical properties of the new Memory Metal Spinal System compared to the Titanium Moss Miami Spinal System. Methods An in-vitro mechanical evaluation of the lumbar Memory Metal Spinal System was conducted. The test protocol followed ASTM Standard F1717-96, “Standard Test Methods for Static and Fatigue for Spinal Implant Constructs in a Corpectomy Model.” Static axial testing in a load to failure mode in compression bending, Static testing in a load to failure mode in torsion, Cyclical testing to estimate the maximum run out load value at 5.0 x 10^6 cycles. Results In the biomechanical testing for static axial compression bending there was no statistical difference between the 2% yield strength and the stiffness of the two types of spinal constructs. In axial compression bending fatigue testing, the Memory Metal Spinal System construct showed a 50% increase in fatigue life compared to the Titanium Moss Miami Spinal System. In static torsional testing the Memory Metal Spinal System constructs showed an average 220% increase in torsional yield strength, and an average 30% increase in torsional stiffness. Conclusions The in-vitro mechanical evaluation of the lumbar Memory Metal Spinal System showed good results when compared to a currently available spinal implant system. Throughout testing, the Memory Metal Spinal System showed no failures in static and dynamic fatigue.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Reference25 articles.

1. Hibbs RA, Swift W: Developmental abnormalities at the lumbosacral juncture causing pain and disability. Surg Gynecol Obstet. 1929, 48: 604-612.

2. White AA, Panjabi M: Clinical biomechanics of the spine. 1978, Philadelphia: JB Lippincott

3. Schulitz KP: Lumbar spine fusion-indication under special consideration of spinal instrumentation. Instumented spinal fusion. Edited by: Wittenberg RH, Steffen R. 1994, Stuttgart, New York: Georg Thieme Verlag, 86-106.

4. Cloward RB: Lesions of the intervertebral disks and their treatment by interbody fusion methods. Clin Orthop. 1963, 27: 51-77.

5. Cloward RB: Rationing the treatment of ruptured lumbar intervertebral discs by vertebral body fusion. J Neurosurg. 1953, 10: 154-168.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and preparation of nickel-titanium implant for lumbar vertebra;Journal of Alloys and Compounds;2023-03

2. Posterior Thoracic Spinal Implants;Handbook of Orthopaedic Trauma Implantology;2023

3. Posterior Thoracic Spinal Implants;Handbook of Orthopaedic Trauma Implantology;2023

4. Comparison of the Optimal Design of Spinal Hybrid Elastic Rod for Dynamic Stabilization: A Finite Element Analysis;Applied Sciences;2022-11-19

5. Finite element analysis after rod fracture of the spinal hybrid elastic rod system;BMC Musculoskeletal Disorders;2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3