Author:
Åstrand Jörgen,Harding Anna Kajsa,Aspenberg Per,Tägil Magnus
Abstract
Abstract
Background
In osteonecrosis the vascular supply of the bone is interrupted and the living cells die. The inorganic mineral network remains intact until ingrowing blood vessels invade the graft. Accompanying osteoclasts start to resorb the bone trabeculae and gradually replace the bone. If the osteonecrosis occurs in mechanically loaded parts, like in the subchondral bone of a loaded joint, the remodelling might lead to a weakening of the bone and, in consequence to a joint collapse. Systemic bisphosphonate treatment can reduce the resorption of necrotic bone. In the present study we investigate if zoledronate, the most potent of the commercially available bisphosphonates, can be used to reduce the amount or speed of bone graft remodeling.
Methods
Bone grafts were harvested and placed in a bone chamber inserted into the tibia of a rat. Host tissue could grow into the graft through openings in the chamber. Weekly injections with 1.05 μg zoledronate or saline were given subcutaneously until the rats were harvested after 6 weeks. The specimens were fixed, cut and stained with haematoxylin/eosin and used for histologic and histomorphometric analyses.
Results
By histology, the control specimens were almost totally resorbed in the remodeled area and the graft replaced by bone marrow. In the zoledronate treated specimens, both the old graft and new-formed bone remained and the graft trabeculas were lined with new bone. By histomorphometry, the total amount of bone (graft+ new bone) within the remodelled area was 35 % (SD 13) in the zoledronate treated grafts and 19 % (SD 12) in the controls (p = 0.001). Also the amount of new bone was increased in the treated specimens (22 %, SD 7) compared to the controls (14 %, SD 9, p = 0.032).
Conclusion
We show that zoledronate can be used to decrease the resorption of both old graft and new-formed bone during bone graft remodelling. This might be useful in bone grafting procedure but also in other orthopedic conditions, both where necrotic bone has to be remodelled i.e. after osteonecrosis of the knee and hip and in Perthes disease, or in high load, high turnover conditions like delayed union, periprosthetic osteolysis or bone lengthening operations. In our model an increased net formation of new bone was found which probably reflects that new bone formed was retained by the action of the bisphosphonates rather than a true anabolic effect.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Reference26 articles.
1. Glimcher MJ, Kenzora JE: The biology of osteonecrosis of the human femoral head and its clinical implications. III. Discussion of the etiology and genesis of the pathological sequelae; commments on treatment. Clin Orthop. 1979, 273-312.
2. Assouline-Dayan Y, Chang C, Greenspan A, Shoenfeld Y, Gershwin ME: Pathogenesis and natural history of osteonecrosis. Semin Arthritis Rheum. 2002, 32: 94-124.
3. Parks NL, Engh GA: Histology of nine structural bone grafts used in total knee arthroplasty. Clin Orthop. 1997, 17-23. 10.1097/00003086-199712000-00004.
4. Little DG, Peat RA, Mcevoy A, Williams PR, Smith EJ, Baldock PA: Zoledronic acid treatment results in retention of femoral head structure after traumatic osteonecrosis in young Wistar rats. J Bone Miner Res. 2003, 18: 2016-22. 10.1359/jbmr.2003.18.11.2016.
5. Tägil M, Astrand J, Westman L, Aspenberg P: Alendronate prevents collapse in mechanically loaded osteochondral grafts: a bone chamber study in rats. Acta Orthop Scand. 2004, 75: 756-61. 10.1080/00016470410004157.
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献