Author:
Cocco Luiz Fernando,Aihara André Yui,Lopes Flávia Paiva Proença Lobo,Werner Heron,Franciozi Carlos Eduardo,dos Reis Fernando Baldy,Luzo Marcus Vinicius Malheiros
Abstract
AbstractBackgroundProximal humerus fractures (PHF) are frequent, however, several studies show low inter-rater agreement in the diagnosis and treatment of these injuries. Differences are usually related to the experience of the evaluators and/or the diagnostic methods used. This study was designed to investigate the hypothesis that shoulder surgeons and diagnostic imaging specialists using 3D printing models and shoulder CT scans in assessing proximal humerus fractures.MethodsWe obtained 75 tomographic exams of PHF to print three-dimensional models. After, two shoulder surgeons and two specialists in musculoskeletal imaging diagnostics analyzed CT scans and 3D models according to the Neer and AO/OTA group classification and suggested a treatment recommendation for each fracture based on the two diagnostic methods.ResultsThe classification agreement for PHF using 3D printing models among the 4 specialists was moderate (global k = 0.470 and 0.544, respectively for AO/OTA and Neer classification) and higher than the CT classification agreement (global k = 0.436 and 0.464, respectively for AO/OTA and Neer). The inter-rater agreement between thetwo shoulder surgeonswere substantial. For the AO/OTA classification, the inter-rater agreement using 3D printing models was higher (k = 0.700) than observed for CT (k = 0.631). For Neer classification, inter-rater agreement with 3D models was similarly higher (k = 0.784) than CT images (k = 0.620). On the other hand, the inter-rater agreement between thetwo specialistsin diagnostic imaging was moderate. In the AO/OTA classification, the agreement using CT was higher (k = 0.532) than using 3D printing models (k = 0.443), while for Neer classification, the agreement was similar for both 3D models (k = 0.478) and CT images (k = 0.421). Finally, the inter-rater agreement in the treatment of PHF by the 2 surgeons was higher for both classifications using 3D printing models (AO/OTA—k = 0.818 for 3D models and k = 0.537 for CT images). For Neer classification, we saw k = 0.727 for 3D printing models and k = 0.651 for CT images.ConclusionThe insights from this diagnostic pilot study imply that for shoulder surgeons, 3D printing models improved the diagnostic agreement, especially the treatment indication for PHF compared to CT for both AO/OTA and Neer classifications On the other hand, for specialists in diagnostic imaging, the use of 3D printing models was similar to CT scans for diagnostic agreement using both classifications.Trial registrationBrazil Platform under no. CAAE 12273519.7.0000.5505.
Publisher
Springer Science and Business Media LLC
Subject
Anesthesiology and Pain Medicine,Orthopedics and Sports Medicine,Surgery
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献