Abstract
Abstract
Background
As electric bicycles (e-bikes) become increasingly popular, reports of injuries associated with e-bike usage are also rising. Patterns, characteristics, and severity of injuries following e-bike crashes need further investigation, particularly in contrast to injuries from conventional bicycle crashes.
Methods
This prospective observational study included 82 patients treated at a Level II trauma center for injuries resulting from an electric or conventional bicycle crash. Data were collected over one year (05.09.2017–19.09.2018) during in- and outpatient visits. A study-specific case report form was used to identify the bicycle type, cycling behavior (e.g., use of a helmet, safety gear, alcohol), and circumstances of the crash (e.g., road conditions, speed, cause of the incident, time of day, season). Additional information about patient demographics, treatment, and injury characteristics, such as the Injury Severity Score (ISS) and body region injured, were documented. Results were analyzed using chi-square, Fisher’s exact, or Wilcoxon tests. Simple logistic or linear regression models were used to estimate associations.
Results
Of the 82 patients, 56 (67%) were riding a conventional bike and 27 (33%) were using an e-bike. Most incidents were either single-bicycle crashes (66%) or automobile collisions (26%), with no notable difference in prevalence rates between groups. Although a higher proportion of conventional bikers were male (67% vs. 48%), the difference was not significant. E-bikers were older (median 60 years (IQR 44–70) vs. 45 years (IQR 32–62); p = 0.008), were hospitalized more often (48% vs. 24%, p = 0.025), and had worse ISS (median 3 (IQR 2–4) vs. 1 (IQR 1–3), p < 0.001), respectively. Body regions most affected were the extremities (78%) and external/skin (46%), and these were distributed similarly in both groups. Concomitant injury patterns of the thorax/chest with external/skin were higher among e-bikers (p < 0.001). When we controlled for the difference in the median age of the two groups, only the injury severity score of e-bikers remained significantly worse.
Conclusions
Hospitalization and chest trauma rates were higher among e-bikers. After controlling for the older age of this group, the severity of their injuries remained worse than in conventional cyclists. Initial clinical assessments at trauma units should include an evaluation of the thorax/chest, particularly among elderly e-bikers.
Level of evidence
Level III.
Publisher
Springer Science and Business Media LLC
Subject
Anesthesiology and Pain Medicine,Orthopedics and Sports Medicine,Surgery
Reference27 articles.
1. Papoutsi S, Martinolli L, Braun CT, Exadaktylos AK. E-bike injuries: experience from an urban emergency department-a retrospective study from Switzerland. Emerg Med Int. 2014;2014:850236.
2. Schweizer Fachstelle Velo und E-Bike. Entwicklung Schweizer Fahrrad- und E-Bike-Markt, 2005 bis 2020 2020 [Available from: https://www.velosuisse.ch/wp-content/uploads/2021/03/Gesamt_2005-2020_Veloverkaufsstatistik_Schweizer_Markt.pdf.
3. Cherry CR, MacArthur JH. E-bike safety. A review of Empirical European and North American Studies. Light Electric Vehicle Education and Research Initiative 2019. https://wsd-pfbsparkinfluence. s3. amazonaws.com/uploads/2019/10/EbikeSafety-VFinal. pdf.
4. Du W, Yang J, Powis B, Zheng X, Ozanne-Smith J, Bilston L, et al. Epidemiological profile of hospitalised injuries among electric bicycle riders admitted to a rural hospital in Suzhou: a cross-sectional study. Injury Prev. 2014;20(2):128–33.
5. Du W, Yang J, Powis B, Zheng X, Ozanne-Smith J, Bilston L, et al. Understanding on-road practices of electric bike riders: an observational study in a developed city of China. Accid Anal Prev. 2013;59:319–26.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献