Advantage of bulk lightning models for predicting lightning frequency over Japan

Author:

Tomioka Takumi,Sato YousukeORCID,Hayashi SyugoORCID,Yoshida SatoruORCID,Iwashita TakeshiORCID

Abstract

AbstractThis study examined the performance of an explicit bulk lightning model coupled with a meteorological model for forecasting lightning by numerical weather prediction over Japan. The evaluation was conducted by comparing the lightning predicted by the explicit bulk lightning model, diagnosed empirically by the numerical model, and observed by ground base measurements. From the results, the bulk lightning model performed better in terms of lightning frequency than did the diagnostic scheme, which overestimated the lightning frequency, although there were no appreciable differences in the score of each method for the geographical distribution and time correlation compared with the observations. These results suggest that the explicit bulk lightning model is advantageous for predicting lightning frequency. The sensitivity of the simulated lightning to the choice of cloud microphysical model was also examined by using a two-moment and a one-moment bulk microphysical scheme. Sensitivity experiments on the choice of microphysical model indicated that the two-moment bulk scheme reproduced the observed lightning well, while the one-moment bulk scheme overestimated the lightning frequency. Analyses suggested that the overestimation of the lightning in the one-moment bulk scheme originated from active charge separation by riming electrification, in which graupel was produced more frequently and was assumed to fall faster. These results suggest that the explicit bulk lightning model with the two-moment bulk microphysical scheme offers an alternative to conventional lightning prediction methods. Graphical abstract

Funder

Japan Society for the Promotion of Science

Moonshot Research and Development Program

Research Field of Hokkaido Weather Forecast and Technology Development (endowed by the Hokkaido Weather Technology Center Co., Ltd.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3