Geomorphometric characterisation of natural and anthropogenic land covers

Author:

Cao WenfangORCID,Sofia Giulia,Tarolli Paolo

Abstract

AbstractThe scientific community has widely discussed the role of abiotic and biotic forces in reshaping the Earth’s surface. Currently, the literature is debating whether humans are leaving a topographic signature on the landscape. Apart from the influence of humans on processes, does the resulting landscape bear an unmistakable signature of anthropogenic activities? This research analyses from a statistical point of view the morphological signature of anthropogenic and natural land covers in different topographic context, as a fundamental challenge in the emerging debate of human-environment relationships and the modelling of global environmental change. It aims to explore how intrinsically small-scale processes, related to land use, can influence the form of entire landscapes and to determine whether these processes create a distinctive topography. The work focusses on four study areas in floodplains, plain to hilly, hills and mountains, for which LiDAR-derived Digital Terrain Models (DTMs) are available. Surface morphology is described with different geomorphometric parameters (slope, mean curvature and surface peak curvature) and their frequency distribution. The results show that the distribution of geomorphometric indices can reveal anthropogenic land covers and landscapes. In most cases, different land covers show statistically significant differences (p < 0.05) in their morphology. Finally, this study demonstrates the possibility to use a geomorphic analysis to quantify anthropogenic impact based on land covers in different landscape contexts. This provides useful insight into understanding the impact of human activities on the present morphology and offers a comprehensive understanding of coupling human-land interaction from a geomorphological point of view.

Funder

Chinese scholarship council

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3