Enstatite chondrites: condensation and metamorphism under extremely reducing conditions and contributions to the Earth

Author:

Lin YangtingORCID

Abstract

AbstractEnstatite chondrites are a small clan of meteorites, only ~ 1% out of all meteorite collection. However, they are the most reduced meteorites and have almost identical isotopic compositions to those of the Earth, suggestive of significant contributions to the latter and other terrestrial planets. Enstatite chondrites contain a unique mineral inventory of sulfides of typical lithophile elements, Si-bearing metal, silicide and phosphide, which record the nebular processes and the thermal metamorphism in asteroidal bodies under extremely reducing environments. EH group is mainly characteristic of the higher Si content of metallic Fe–Ni and the higher MnS contents of sulfides than EL group, indicative of a more reducing condition than the latter. However, the fugacity pH2S could be the same in both EH and EL regions, because it was buffered by kamacite and troilite. The majority of sulfides condensed from the nebula, partially enclosing schreibersite micron-spherules formed probably by early melting. Another part of troilite, sphalerite and djerfisherite, intergrown with perryite, were produced via sulfidation of metallic Fe–Ni. Minor exotic components were also found in enstatite chondrites, including Ca-, Al-rich inclusions and FeO-rich silicate clasts. The Ca-, Al-rich inclusions are identical to those in carbonaceous chondrites except for the alteration under reducing environments, and the FeO-rich silicate clasts show reduction reactions, both suggestive of migration of dust in the protoplanetary disk. The highly reducing conditions (as C/O ratios) might be established via repeating evaporation and condensation of water ice and organic matter across the snow line along the protoplanetary disk, but need to find evidence. Another issue is the preservation of submicron-to-micron-sized presolar grains during high-temperature condensation of the major constituent minerals. After accretion, the parent bodies of EH and EL chondrites probably experienced distinct thermal histories, indicated by their distinct petrologic-type distributions and different correlations with the closure temperatures determined by the FeS contents of sulfides in contact with troilite.The composition of (Mg, Mn, Fe)S, a key indicator for condensation and metamorphism of enstatite chondrites.

Funder

Chinese Academy of Sciences

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference105 articles.

1. Alexander CMOD, Swan P, Prombo CA (1994) Occurrence and implications of silicon nitride in enstatite chondrites. Meteoritics 29:79–84

2. Ash R D, Gilmour J D, Whitby J, Prinz M and Turner G (1997) I-Xe dating of chondrules from the Qingzhen unequilibrated enstatite chondrite (abstract). Lunar and Planetary Science Conference XXVIII:61–62

3. Balabin AI, Urusov VS (1995) Recalibration of the sphalerite cosmobarometer: experimental and theoretical treatment. Geochim Cosmochim Acta 59:1401–1410

4. Bischoff A, Keil K, Stoeffler D (1985) Perovskite-hibonite-spinel-bearing inclusions and Al-rich chondrules and fragments in enstatite chondrites. Chem Erde 44:97–106

5. Boyet M, Bouvier A, Frossard P, Hammouda T, Garcon M, Gannoun A (2018) Enstatite chondrites EL3 as building blocks for the Earth: The debate over the 146Sm–142Nd systematics. Earth Planet Sci Lett 488:68–78

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3