Prediction of soil erosion and sediment transport in a mountainous basin of Taiwan

Author:

Liou Yuei-AnORCID,Nguyen Quang-Viet,Hoang Duc-Vinh,Tran Duy-Phien

Abstract

AbstractSoil erosion substantially implicates global nutrient and carbon cycling of the land surface. Its monitoring is crucial for assessing and managing global land productivity and socio-economy. The Zhuoshui River Basin, the largest catchment, in Taiwan is highly susceptible to soil erosion by water due to extremely high rainfall, rugged terrain, easily eroded soil, and intensively agricultural cultivation over the steep land. Hence, this study examines the annual soil erosion rate for 2005, 2011, and 2019 and the average long-term soil erosion and sediment yield (SY) during 2005–2019. Coupling of the Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratio (SDR) models is implemented using remote sensing and GIS techniques. The soil erosion rate is classified into five classes, namely mild (0–10 t ha−1 year−1), moderate (10–50 t ha−1 year−1), moderately severe (50–100 t ha−1 year−1), severe (100–150 t ha−1 year−1), and very severe (> 150 t ha−1 year−1). Over one half of the total area is categorized as moderate and moderately severe classes, and one-third of the whole basin as severe and very severe classes. Recently, mild and moderate classes increase, while moderately severe, severe, and very severe decrease. During 2005–2019, the annual soil loss rate ranges from 0.00 to 6,881.88 t ha−1 year−1 with an average rate of 122.94 t ha−1 year−1. Among the SDR models, the RUSLE combined with the SDR model with the length and slope gradient of mainstream shows satisfactory sediment yield estimation. Predictably, the downstream receives a massive sediment delivery from all upper streams (246.06 × 106 t year−1), and the percent bias values for all sub-basins are below ± 39.0%. The study provides a rapid approach to investigate soil erosion and sediment yield, and it can be applied to the other basins in Taiwan. More importantly, information about spatial patterns of soil erosion and SY is critical to establish suitable measures to achieve effective watershed planning and optimize the regional productivity and socio-economy. The proposed approach is potentially to identify risk areas, conduct scenario estimation for management, and perform spatiotemporal comparison of soil erosion, while adjustment in the empirical formulas of the proposed approach may be needed when it is applied to the other regions, especially outside Taiwan.

Funder

Ministry of Science and Technology, Taiwan

Soil and Water Conservation Bureau

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3