Marine inundation history during the last 3000 years at Lake Kogare-ike, a coastal lake on the Pacific coast of central Japan

Author:

Shimada YumiORCID,Sawai Yuki,Matsumoto Dan,Tanigawa Koichiro,Ito Kazumi,Tamura Toru,Namegaya Yuichi,Shishikura Masanobu,Fujino Shigehiro

Abstract

AbstractSediment cores collected at Lake Kogare-ike, a coastal lake on the Pacific coast of central Japan, record the marine inundation history during the last 3000 years. The sediments consist mainly of organic mud, sand, gravel, inorganic mud, and volcanic ash, and inundation events were recognized as 19 event deposits (E1–E19, from top to bottom) interbedded with the organic mud. Visual observation by naked eyes and X-ray computed tomography (CT) images identified 16 event deposits based on quantitative and qualitative changes in sand contents and changes in the textures and colors of the sediment samples (E1–E3, E5, E6, E8, E9, and E11–E19). The other three event deposits (E4, E7, and E10) were identified only on the CT images as layers with higher radiodensity than the underlying and overlying organic mud layers. The sedimentary features, the spatial bias of the event deposits toward seaward areas, the diatom assemblages, and the frequency of inundation events suggest that 13 (E1–E10 and E12–E14) of the 19 event deposits were formed by tsunamis or extraordinary storms. To constrain the depositional ages of the event deposits, Bayesian age–depth models were constructed based on radiocarbon dating of plant macrofossils and concentrated fossil pollen and the 137Cs profile. The depositional ages of the event deposits indicate that five or possibly six event deposits can be correlated with historical tsunamis along the Nankai Trough: E2, either of E3 or E4, E5, E7, and E9 correspond to the 1707 CE Hoei, the 1605 CE Keicho, the 1498 CE Meio, the 1096 CE Eicho, and the 684 CE Hakuho tsunamis, respectively. E1 was possibly formed by the 1944 CE Showa-Tonankai tsunami, the 1854 Ansei–Tokai tsunami, the 1959 Isewan typhoon, or a combination of two or all three events.

Funder

Geological Survey of Japan

the Ministry of Education, Culture, Sports and Technology of Japan

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3