Rapid, accurate computation of narrow-band sky radiance in the 940 nm gas absorption region using the correlated k-distribution method for sun-photometer observations

Author:

Momoi MasahiroORCID,Irie Hitoshi,Sekiguchi Miho,Nakajima Teruyuki,Takenaka Hideaki,Miura Kazuhiko,Aoki Kazuma

Abstract

AbstractWe developed lookup tables for the correlated k-distribution (CKD) method in the 940 nm water vapor absorption region (WV-CKD), with the aim of rapid and accurate computation of narrow-band radiation around 940 nm (10,000–10,900 $${\mathrm{cm}}^{-1}$$ cm - 1 ) for ground-based angular-scanning radiometer data analysis. Tables were constructed at three spectral resolutions (2, 5, and 10 $${\mathrm{cm}}^{-1}$$ cm - 1 ) with quadrature values (point and weight) and numbers optimized using simulated sky radiances at ground level, which had accuracies of ≤ 0.5% for sub-bands of $$10 {\mathrm{cm}}^{-1}$$ 10 cm - 1 . Although high-resolution WV-CKD requires numerous quadrature points, the number of executions of the radiative transfer model is reduced to approximately 1/46 of the number used in the line-by-line approach by our WV-CKD with a resolution of 2 $${\mathrm{cm}}^{-1}$$ cm - 1 . Furthermore, we confirmed through several simulations that WV-CKD could be used to compute radiances with various vertical profiles. The accuracy of convolved direct solar irradiance and diffuse radiance at a full width at half maximum (FWHM) of 10 nm, computed with the WV-CKD, is < 0.3%. In contrast, the accuracy of convolved normalized radiance, which is the ratio of diffuse radiance to direct solar irradiance, at an FWHM of 10 nm computed with the WV-CKD is < 0.11%. This accuracy is lower than the observational uncertainty of a ground-based angular-scanning radiometer (approximately 0.5%). Finally, we applied the SKYMAP and DSRAD algorithms (Momoi et al. in Atmos Meas Tech 13:2635–2658, 2020. 10.5194/amt-13-2635-2020) to SKYNET observations (Chiba, Japan) and compared the results with microwave radiometer values. The precipitable water vapor (PWV) derived with the WV-CKD showed better agreement (correlation coefficient γ = 0.995, slope = 1.002) with observations than PWV derived with the previous CKD table (correlation coefficient γ = 0.984, slope = 0.926) by Momoi et al. (Momoi et al., Atmos Meas Tech 13:2635–2658, 2020). Through application of the WV-CKD to actual data analysis, we found that an accurate CKD table is essential for estimating PWV from sky-radiometer observations.

Funder

Environmental Restoration and Conservation Agency

Japan Society for the Promotion of Science

Japan Aerospace Exploration Agency

Tokyo University of Science

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3