Climate, vegetation and fire history during the past 18,000 years, recorded in high altitude lacustrine sediments on the Sanetti Plateau, Bale Mountains (Ethiopia)

Author:

Mekonnen BetelhemORCID,Glaser Bruno,Zech Roland,Zech Michael,Schlütz Frank,Bussert Robert,Addis Agerie,Gil-Romera Graciela,Nemomissa Sileshi,Bekele Tamrat,Bittner Lucas,Solomon Dawit,Manhart Andreas,Zech Wolfgang

Abstract

AbstractLow-altitude lakes in eastern Africa have long been investigated and have provided valuable information about the Late Quaternary paleohydrological evolution, such as the African Humid Period. However, records often suffer from poor age control, resolution, and/or ambiguous proxy interpretation, and only little focus has been put on high-altitude regions despite their sensitivity to global, regional, and local climate change phenomena. Here we report on Last Glacial environmental fluctuations at about 4000 m asl on the Sanetti Plateau in the Bale Mountains (SE Ethiopia), based on biogeochemical and palynological analyses of laminated lacustrine sediments. After deglaciation at about 18 cal kyr BP, a steppe-like herb-rich grassland with maximum Chenopodiaceae/Amaranthaceae and Plantago existed. Between 16.6 and 15.7 cal kyr BP, conditions were dry with a desiccation layer at ~ 16.3 cal kyr BP, documenting a temporary phase of maximum aridity on the plateau. While that local event lasted for only a few decades, concentrations of various elements (e.g. Zr, HF, Nb, Nd, and Na) started to increase and reached a maximum at ~ 15.8–15.7 cal kyr BP. We interpret those elements to reflect allochthonous, aeolian dust input via dry northerly winds and increasingly arid conditions in the lowlands. We suggest an abrupt versus delayed response at high and low altitudes, respectively, in response to Northern Hemispheric cooling events (the Heinrich Event 1). The delayed response at low altitudes might be caused by slow negative vegetation and monsoon feedbacks that make the ecosystem somewhat resilient. At ~ 15.7 cal kyr BP, our record shows an abrupt onset of the African Humid Period, almost 1000 years before the onset of the Bølling–Allerød warming in the North-Atlantic region, and about 300 years earlier than in the Lake Tana region. Erica pollen increased significantly between 14.4 and 13.6 cal kyr BP in agreement with periodically wet and regionally warm conditions. Similarly, intense fire events, documented by increased black carbon, correlate with wet and warm environmental conditions that promote the growth of Erica shrubs. This allows to conclude that biomass and thus fuel availability is one important factor controlling fire events in the Bale Mountains.

Funder

Deutsche Forschungsgemeinschaft

Martin-Luther-Universität Halle-Wittenberg

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3