Imaging flow focusing and isolation of aqueous fluids in synthetic quartzite: implications for permeability and retained fluid fraction in deep-seated rocks

Author:

Fujita Wakana,Nakamura MichihikoORCID,Uesugi Kentaro,Eichheimer Philipp,Thielmann Marcel,Golabek Gregor J.

Abstract

AbstractThe microstructure of realistic fluid–rock systems evolves to minimize the overall interfacial energy, enabling local variations in fluid geometry beyond ideal models. Consequently, the permeability–porosity relationship and fluid distribution in these systems may deviate from theoretical expectations. Here, we aimed to better understand the permeability development and fluid retention in deep-seated rocks at low fluid fractions by using a combined approach of high-resolution synchrotron radiation X-ray computed microtomography imaging of synthesized rocks and numerical permeability computation. We first synthesized quartzite using a piston-cylinder apparatus at different fluid fractions and wetting properties (wetting and non-wetting systems with dihedral angles of 52° and 61°–71°, respectively) under conditions of efficient grain growth. Although all fluids should be connected along grain edges and tubules in the homogeneous isotropic wetting fluid–rock system enabling segregation by gravitational compaction in natural settings, the fluid connectivity rapidly decreased to ~ 0 when the total fluid fraction decreased to 0.030–0.037, as the non-ideality of quartzite, including the interfacial energy anisotropy (i.e., grain faceting), became critical. In non-wetting systems, where the minimum energy fluid fraction based solely on the dihedral angle is ~ 0.015–0.035, the isolated (disconnected) fractions was 0.048–0.062. A streamline computation in the non-wetting system revealed that with decreasing total porosity, flow focusing into fewer channels maintained permeability, allowing the effective segregation of the connected fluids. These results provide insight into how non-wetting fluids segregate from rocks and exemplify the fraction of retained fluids in non-wetting systems. Thus, the findings suggest a potential way for wetting system fluids to be transported into the deep Earth's interior, and the amount of fluids dragged down to the Earth’s interior could be higher than what was previously estimated.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology of Japan

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3