Solar evolution and extrema: current state of understanding of long-term solar variability and its planetary impacts

Author:

Nandy DibyenduORCID,Martens Petrus C. H.,Obridko Vladimir,Dash Soumyaranjan,Georgieva Katya

Abstract

AbstractThe activity of stars such as the Sun varies over timescales ranging from the very short to the very long—stellar and planetary evolutionary timescales. Experience from our solar system indicates that short-term, transient events such as stellar flares and coronal mass ejections create hazardous space environmental conditions that impact Earth-orbiting satellites and planetary atmospheres. Extreme events such as stellar superflares may play a role in atmospheric mass loss and create conditions unsuitable for life. Slower, long-term evolutions of the activity of Sun-like stars over millennia to billions of years result in variations in stellar wind properties, radiation flux, cosmic ray flux, and frequency of magnetic storms. This coupled evolution of star-planet systems eventually determines planetary and exoplanetary habitability. The Solar Evolution and Extrema (SEE) initiative of the Variability of the Sun and Its Terrestrial Impact (VarSITI) program of the Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) aimed to facilitate and build capacity in this interdisciplinary subject of broad interest in astronomy and astrophysics. In this review, we highlight progress in the major themes that were the focus of this interdisciplinary program, namely, reconstructing and understanding past solar activity including grand minima and maxima, facilitating physical dynamo-model-based predictions of future solar activity, understanding the evolution of solar activity over Earth’s history including the faint young Sun paradox, and exploring solar-stellar connections with the goal of illuminating the extreme range of activity that our parent star—the Sun—may have displayed in the past, or may be capable of unleashing in the future.

Funder

Ministry of Human Resource Development

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3