Impact of the Kuroshio large meander on local atmospheric circulation and precipitation in winter

Author:

Sasaki Yoshi N.ORCID,Ito Ryunosuke

Abstract

AbstractThe Kuroshio, which flows to the south of Japan, typically takes two paths on decadal timescales; the straight path and the large meander path, or the so-called Kuroshio large meander. This phenomenon is characterized by the presence of the cyclonic cold-core eddy located south of Japan, which leads to both negative and positive sea surface temperature (SST) anomalies along the southeastern coast of Japan. To clarify the atmospheric response to these SST anomalies in winter, we conducted a control experiment employing a regional atmospheric model with observed SSTs and two sensitivity experiments in which the SST boundary conditions were substituted with those corresponding to the periods of for the Kuroshio large meander and the straight path. The differences in these two sensitivity experiments showed that the surface wind response to the SST anomalies associated with the Kuroshio large meander was not only characterized by wind divergence over the cyclonic cold-core eddy, as reported previously but also wind convergence along the southeastern coast of Japan. Interestingly, this wind anomaly blew into the positive SST anomaly along the east coast of Japan at around 36°N. Similar wind anomalies along the east coast of Japan were observed in a reanalysis product. The results of the model simulation and the reanalysis product showed that during the Kuroshio large meander period, the number of rainy days increased significantly over the warm SST anomaly, while the precipitation and the number of rainy days decreased over the cyclonic cold-core eddy. Moisture budget analysis revealed that the observed decrease in precipitation was attributed to the disparity between the reduced evaporation and the anomalous horizontal moisture convergence in a region where the surface winds were divergent. This moisture convergence was mainly induced by a decrease in specific humidity, implying this change in specific humidity effectively mitigated the variation in precipitation.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3