Dynamics of the terrestrial radiation belts: a review of recent results during the VarSITI (Variability of the Sun and Its Terrestrial Impact) era, 2014–2018

Author:

Kanekal Shrikanth,Miyoshi YoshizumiORCID

Abstract

AbstractThe Earth’s magnetosphere is region that is carved out by the solar wind as it flows past and interacts with the terrestrial magnetic field. The inner magnetosphere is the region that contains the plasmasphere, ring current, and the radiation belts all co-located within about 6.6 Re, nominally taken to be bounding this region. This region is highly dynamic and is home to a variety of plasma waves and particle populations ranging in energy from a few eV to relativistic and ultra-relativistic electrons and ions. The interplanetary magnetic field (IMF) embedded in the solar wind via the process of magnetic reconnection at the sub-solar point sets up plasma convection and creates the magnetotail. Magnetic reconnection also occurs in the tail and is responsible for explosive phenomena known as substorms. Substorms inject low-energy particles into the inner magnetosphere and help generate and sustain plasma waves. Transients in the solar wind such as coronal mass ejections (CMEs), co-rotating interaction regions (CIRs), and interplanetary shocks compress the magnetosphere resulting in geomagnetic storms, energization, and loss of energetic electrons in the outer radiation belt nad enhance the ring current, thereby driving the geomagnetic dynamics. The Specification and Prediction of the Coupled Inner-Magnetospheric Environment (SPeCIMEN) is one of the four elements of VarSITI (Variability of the Sun and Its Terrestrial Impact) program which seeks to quantitatively predict and specify the inner magnetospheric environment based on Sun/solar wind driving inputs. During the past 4 years, the SPeCIMEN project has brought together scientists and researchers from across the world and facilitated their efforts to achieve the project goal. This review provides an overview of some of the significant scientific advances in understanding the dynamical processes and their interconnectedness during the VarSITI era. Major space missions, with instrument suites providing in situ measurements, ground-based programs, progress in theory, and modeling are briefly discussed. Open outstanding questions and future directions of inner magnetospheric research are explored.

Funder

NASA

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3