A possible mechanism for spontaneous cyclic back-arc spreading

Author:

Ishii KazuhikoORCID,Wallis Simon R.

Abstract

AbstractBack-arc spreading is a non-steady-state process exemplified by the repeated cycles of spreading of the South Fiji and the Lau Basins behind the Tonga arc, and the Parece Vela Basin and the Mariana Trough behind the Mariana arc. Spreading in these regions starts with rifting within the volcanic arc before shifting to the back-arc region where it develops into a phase of well-defined spreading. 2D thermo-mechanical subduction modeling incorporating phase transitions at depths of 410 km and 660 km suggests the presence of a low-viscosity and low-density mantle wedge is an important condition for arc rifting to occur. Back-arc spreading starts when a nearly vertical slab impinges upon the 660 km discontinuity causing downdip compressive stress that is transmitted up the slab resulting in extensional within-arc stress. Trench retreat during a phase of back-arc spreading causes a decrease in slab dip angle and buckling of the slab. Back-arc spreading ceases during this buckling phase. Rifting starts once more when the nearly vertically dipping ‘heel’ of the buckled slab again impinges upon the 660-km boundary. The second phase of rifting initially focuses within the arc but subsequently shifts to the back-arc region leading to renewed back-arc spreading. Our modeling predicts that subduction of thick (old age) and weak (small yield stress) slabs, which have intermediate resistance to slab bending, leads to cyclic back-arc spreading. In contrast, continuous back-arc spreading is predicted for thick and strong slabs with a large resistance to bending, and no back-arc spreading is predicted for slabs with a small resistance to bending (thin slabs). Geological processes such as toroidal mantle flow around the lateral edges of a slab, collisions with buoyant lithosphere and interactions with third plates may have important roles in the development of cyclic back-arc spreading in specific cases. However, the presence of a common timescale of ~ 20 Myr suggests there a general underlying control on back-arc basin formation that is common to many if not all subduction zones. The new model presented here can account for the main features of cyclic back-arc spreading seen in the Tonga-Kermadec and the Calabrian arcs.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3