Petrogenetic history and melt inclusion characteristics of mantle plume-derived ijolites from NE India: implications for multistage crystallization and occurrence of “nano-calciocarbonatites”

Author:

Choudhary Shubham,Sen Koushik,Rana Shruti,Kumar Santosh

Abstract

AbstractThe Sung Valley ultramafic–alkaline–carbonatite complex (UACC) of Meghalaya, NE, India, is a result of magmatic activity related to the Kerguelen mantle plume spanning from 101 to 115 Ma. In the present study, an integrated crystal size distribution (CSD), mineral chemistry, and melt inclusion analysis are carried out on the ijolites present within this UACC. The CSD analysis shows that these ijolites were formed in multiple stages through changes in the crystallization environment, such as cooling and nucleation rates. Raman spectroscopy of mineral inclusions of rutile, aphthitalite, apatite, carbonate–silicate melt inclusions, and disordered graphite within clinopyroxene and titanite, respectively, indicates a heterogeneous composition of the parental magma. These mineral and melt inclusion phases further suggest localized changes in oxygen fugacity (fO2) due to redox reactions in the lower crust. SEM–EDX analysis of the exposed melt inclusions reveals the presence of alkali-bearing diopside, phlogopite, and andradite, along with an unidentified carbonated silicate daughter phase. The studied melt inclusions are dominated by carbonate, whereas silicates are subordinate. The presence of this fully crystallized carbonate–silicate melt as calcite, diopside, phlogopite, magnetite, apatite, and andradite suggests the presence of “nano-calciocarbonatites” in these ijolites. Our study provides insights into different mechanisms of the loss of alkalies from initially entrapped alkaline carbonate melt in clinopyroxenes. The predominant occurrence of calcite as the only carbonate phase in the studied melt inclusions is a result of silicate–carbonate melt immiscibility, calcite-normative system in these inclusions, dealkalization of the alkaline carbonates in the presence of external fluid, and/or redistribution of the alkalies to the daughter alkali-bearing silicates.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3