Seismicity distribution in the Tonankai and Nankai seismogenic zones and its spatiotemporal relationship with interplate coupling and slow earthquakes

Author:

Yamamoto YojiroORCID,Yada Shuichiro,Ariyoshi Keisuke,Hori Takane,Takahashi Narumi

Abstract

AbstractWe conducted seismic tomography to estimate the seismic velocity structure and to evaluate the spatiotemporal distribution of interplate earthquakes of the Kii Peninsula, central Honshu, Japan, where the Tonankai and Nankai megathrusts are located. Microearthquakes were quantitatively detected by using the data from a cable-type seafloor seismic observation network, completed in 2015. Our velocity model was consistent with the previous 2-D active-source surveys, which reported the areal extent of key structures: a high-velocity zone beneath Cape Shionomisaki, a subducted seamount off Cape Muroto, and the subducted Paleo-Zenith Ridge. The absence of any other subducted seamount with the same or larger spatial scale, than the identified key structures, was confirmed. Our velocity model also revealed that there was not a simple relationship between areas of large coseismic slip or strong interplate coupling and areas of high velocity in the overriding plate. Relocated hypocenters widely ranged from the upper plate to within the slab, while the most active region was attributed to the oceanic crust in the aftershock region of 2004 off-Kii earthquake. Compared with the results from the land-based observation network, the accuracy of the focal depth estimation was substantially improved. Furthermore, we identified the seismic activity in the vicinity of the plate boundary and determined 14 locations for interplate seismicity areas. They were primarily distributed in the range of seismogenic zone temperature (150–350 °C) along the plate boundary and were located outside of the strong interplate coupling zone. Several active areas of interplate earthquakes exhibited clustered activity during the periods of slow-slip events, observed and accompanied with shallow very-low-frequency earthquakes. Thus, regular interplate microearthquakes became active at the plate boundary in the conjunction with slow slip. In summary, as regular earthquakes provide a more accurate source location than slow earthquakes and can detect events of smaller magnitude, monitoring such interplate earthquakes may reveal spatiotemporal variations in the stick–slip conditions on the plate boundary.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3