Possible link between temperatures in the seashore and open ocean waters of Peru identified by using new seashore water data

Author:

Masuda ShuheiORCID,Kobayashi Masato,Icochea Salas Luis Alfredo,Rosales Quintana Gandy Maria

Abstract

AbstractThe linkage between environmental conditions in the coastal ocean and the open sea varies greatly by region. It is important to clarify, on an area-by-area basis, what coastal monitoring information reveals about the open ocean and how much predictive information for the open ocean may be applicable to the coastal ocean. The Pacific Ocean off the coast of Peru is a monitoring area for the El Niño/La Niña, an oceanic–atmospheric phenomenon of global importance. However, there are not many reliable data along the Peruvian coast. We deployed a network of 6 logger sites along the Peruvian coast during 2017–2020 and compiled a useful, high-resolution dataset of water temperatures. We examined a possible link between temperatures in the coastal waters of Peru and the open sea by comparing the new dataset with historical temperatures in the open ocean. We confirmed that monthly mean anomalies of seashore water temperatures in coastal Peru were strongly correlated with those of open ocean sea surface temperatures. With one exception, the correlation coefficients ranged from 0.80 to 0.92 and were significant at p < 0.01. This result suggested that data obtained from monitoring along the Pacific coast of Peru could be used to indicate the state of the open ocean and that El Niño forecasts for the open ocean could be applied to coastal forecasting as well. Spectral analysis revealed that the periods of changes of seashore water temperature peaked at 80 and 120 days in the region north of 5° S. This result suggested that coastal monitoring might capture intraseasonal dynamics of equatorial Kelvin waves. The absence of clear peaks south of 5° S implied that equatorial wave energy did not penetrate far into off-equatorial regions along the Peruvian coast on intraseasonal timescales.

Funder

Japan Society for the Promotion of Science

AIP Network Laboratory

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3