Abstract
AbstractProposed in 1954, Alisov’s climate classification (CC) focuses on climatic changes observed in January–July in large-scale air mass zones and their fronts. Herein, data clustering by machine learning was applied to global reanalysis data to quantitatively and objectively determine air mass zones, which were then used to classify the global climate. The differences in air mass zones between two half-year seasons were used to determine climatic zones, which were then subdivided into continental or maritime climatic regions or according to east–west climatic differences. This study renews Alisov’s CC for the first time in almost 70 years and employs data-driven machine learning to establish a standard for causal CC based on air masses.
Funder
Ministry of Education, Culture, Sports, Science and Technology of Japan
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Reference44 articles.
1. Adler RF, Sapiano MRP, Huffman GJ, Wang JJ, Gu G, Bolvin D, Chiu L, Schneider U, Becker A, Nelkin E, Xie P, Ferraro R, Shin DB (2018) The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere 9:138. https://doi.org/10.3390/atmos9040138
2. Alisov BP (1936) Geographical types of climates. Meteorol Hydrol 1:16–25. (in Russian)
3. Alisov BP (1954) Die Klimate der Erde (ohne das Gebiet der UdSSR). Deutscher Verlag der Wissenschaften, Berlin, p 277
4. Arthur D, Vassilvitskii S (2007) k-means++: The advantages of careful seeding. In: Proceedings symposium discrete algorithms 1027–1035.
5. Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5:180214. https://doi.org/10.1038/sdata.2018.214
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献