Abstract
AbstractThe purpose of this study is to clarify the vertical prokaryotic distribution in groundwater in a terrestrial subsurface sedimentary environment with a geological complex. Six groundwater samples were collected from a coastal 1200-m-deep borehole in which digging strata deposited between 2.3 and 1.5 Ma in Horonobe, Hokkaido, Japan. The studied succession was divided into three vertical zones that were geochemically differentiated according to their chloride contents and water-stable isotopes. The upper zone (UZ; shallower than 500 m) primarily contained fresh water supplied by penetrating meteoric water, the connate water zone (CWZ; deeper than 790 m) contained paleo-seawater, and the diffusion zone (DZ; 500–790 m depth) located between UZ and CWZ. Fluctuations in the prokaryotic density and constituents were observed across these three zones. The prokaryotic density decreased from UZ toward DZ, and the density of DZ was two orders of magnitude lower than that of UZ and CWZ. High prokaryotic activity was observed in CWZ below DZ. The upward expansion of prokaryotic distribution from CWZ, where high prokaryotic potential expressed by biomass can be maintained almost equivalent to that in the marine environment, probably occurred on a geological timescale from 80 ka to 1.3 Ma, as shown by the groundwater age of DZ. The DZ is a zone where the geochemistry has changed drastically owing to the mixing of penetrating meteoric water and the diffusion of deep paleo-seawater, preserving a unique subsurface environment. This chemically mixed zone might be considered as a buffering zone for prokaryotes to prevent the expansion of prokaryotic density and activity provided by diffusion and their in situ growth from both above and below the zones, which is expected to be maintained over a geological timescale. This zone is considered important for using subsurface space in the deep subsurface environment of the island arc.
Funder
Ministry of Economy, Trade and Industry
Publisher
Springer Science and Business Media LLC
Reference75 articles.
1. Agency for Natural Resources and Energy (2018) The project for development of advanced of geological disposal system in coastal region (2017 Fy) (in Japanese). https://www.enecho.meti.go.jp/category/electricity_and_gas/nuclear/rw/library/2017/29fy_engan.pdf. Accessed 17 Jul 2023
2. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169. https://doi.org/10.1128/mr.59.1.143-169.1995
3. Auty MAE, Gardiner GE, McBrearty SJ, O’Sullivan EO, Mulvihill DM, Collins JK, Fitzgerald GF, Stanton C, Ross RP (2001) Direct in situ viability assessment of bacteria in probiotic dairy products using viability staining in conjunction with confocal scanning laser microscopy. Appl Environ Microbiol 67(1):420–425. https://doi.org/10.1128/AEM.67.1.420-425.2001
4. Borcard D, Gille F, Legendre P (2011) Numerical ecology with R. Springer, New York
5. Bowman JP, McMeekin TA (2005) Genus XI Pseudoalteromonas. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM et al (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 467–478