Automation of 3D average human body shape modeling using Rhino and Grasshopper Algorithm

Author:

Lee Kyu Sun,Song Hwa KyungORCID

Abstract

AbstractThe aim of this study is to develop an automated process for modeling average 3D human body according to body types using both NUBRS-based modeling software Rhinoceros 3D® (Rhino) and Grasshopper as an algorithm editor. First, we categorized men aged 36 to 55 years included in SizeUSA 3D data into the three body types (normal, overweight, and obese), and selected seven samples in each body type. To execute the automated process of generating an average 3D model of their lower bodies in a step-by-step manner, the following procedures were performed: (1) Determine the main reference lines on the 3D-scanned lower bodies, including six horizontal reference lines and six vertical reference lines; (2) Create horizontal and vertical line grids and intersection points (3) Generate an average 3D model in a position that corresponds to the average coordinates of the intersection points (vertex coordinates) of seven samples for each body type. A Grasshopper algorithm was formulated to automatically execute all procedures that had to be repeatedly performed. As a way to verify the average model’s size and shape, the girth measurements of the samples for each body type were averaged, and the results were compared with those of the 3D average body shape. It was found that the deviation was less than 1 cm, which indicates the validity of the 3D modeling approach applied in the present study. Each process was incorporated into commands available in the Rhino interface, and this automation allowed a number of 3D body shape modeling operations to be implemented in a significantly reduced time period.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Marketing,Strategy and Management,Materials Science (miscellaneous),Cultural Studies,Social Psychology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semi-automated generation of bone loss defects around dental implants and its application in finite element analysis;Computer Methods in Biomechanics and Biomedical Engineering;2023-09-14

2. Programming application of contemporary jewelry design forms based on Grasshopper software;Applied Mathematics and Nonlinear Sciences;2023-06-05

3. Grasshopper 프로그래밍 기반 3D 인체형상의 하반신 기준점 자동탐색 알고리즘 설계;Journal of the Korean Society of Clothing and Textiles;2023-02-28

4. Verification of the Accuracy of Photogrammetry in 3D Full-Body Scanning;Journal of the Korean Society of Clothing and Textiles;2023-02-28

5. Fast Realistic 3D Face Modeling Algorithm for Film and Television Animation;Lecture Notes in Electrical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3