The relevance of breast motions and gaits in running exercises

Author:

Zhou JieORCID,Mao Qian,Zhang Jun,Lau Newman M. L.,Chen Jianming

Abstract

AbstractThe control of breast motions is a critical indicator to evaluate the comfort and function of sports bras. If the breast motions can be predicted based on the gait parameters detected by wearable sensors, it will more economical and convenient to evaluate the bras. Thirteen unmarried Chinese females with a breast cup of 75B were recruited in this study to investigate the regularity of breast motions and the relevance between breast motions and gaits during running exercises. The breast motion indicator is the distance alteration of breast regions. The gaits were described by the rotation angles of the hip, knee, ankle joints, and the foot height off the ground. Firstly, the Mann-Whitney U test and the Kruskal-Wallis H test were utilized to analyze the motion diversity among the eight breast regions. Then, the gray correlation analysis was applied to explore the relevance between breast motions and gaits. Finally, the back-propagation neural network, the genetic algorithm, and the particle swarm optimization algorithm were utilized to construct the prediction models for breast motions based on gait parameters. The results demonstrate that the same breast regions on the bilateral breasts and the different breast regions on the ipsilateral breasts present a significant motion diversity. There is a moderate correlation between breast motions and gait parameters, and the back-propagation neural network optimized by the particle swarm optimization algorithm performs better in breast motion prediction, which has a coefficient of determination of 84.58% and a mean absolute error of 0.2108.

Funder

Shaanxi Science and Technology Department International

Publisher

Springer Science and Business Media LLC

Subject

Marketing,Strategy and Management,Materials Science (miscellaneous),Cultural Studies,Social Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3