Evolution of 3D weaving and 3D woven fabric structures

Author:

Perera Yasith SanuraORCID,Muwanwella Rajapaksha Mudiyanselage Himal Wido,Fernando Philip Roshan,Fernando Sandun Keerthichandra,Jayawardana Thantirige Sanath Siroshana

Abstract

Abstract3D fabric preforms are used as reinforcements in composite applications. 3D woven preforms have a huge demand in ballistic applications, aircraft industry, automobiles and structural reinforcements. A variety of 3D woven fabric reinforced composites and two dimensional woven fabric reinforced laminates can be found in the literature. However, the majority of the said products lack in delamination resistance and possess poor out-of-plane mechanical characteristics, due to the absence or insufficiency of through-thickness reinforcement. 3D fully interlaced preform weaving introduces a method of producing fully interlaced 3D woven fabric structures with through-thickness reinforcement, which enhances the delamination resistance as well as out-of-plane mechanical characteristics. 3D woven fabric preforms made from 3D fully interlaced preform weaving, using high-performance fiber yarns such as Dyneema, Carbon, Kevlar and Zylon, have exceptional mechanical properties with light-weight characteristics, which make them suitable candidates for high-end technical composite applications. In this work, a brief introduction is given to the history of weaving followed by an introduction to 3D woven fabrics. In the existing literature, an emphasis is given to the 3D fully interlaced preform weaving process, distinguishing it from other 3D woven fabric manufacturing methods. Subsequently, a comprehensive review is made on the existing literature on 3D fully interlaced preform weaving devices, such as primary and secondary mechanisms as well as modelling of 3D woven fabric structures produced by 3D fully interlaced preform weaving. Finally, the authors attempted to discuss the existing research gaps with potential directions for future research.

Publisher

Springer Science and Business Media LLC

Subject

Marketing,Strategy and Management,Materials Science (miscellaneous),Cultural Studies,Social Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3