Abstract
AbstractRecycling and converting textile waste into value-added products with enhanced functional properties pave the way toward a circular economy for sustainability. This research investigates the utilization of recycled cotton fiber from apparel cutting waste for fabricating high-performance thermal barrier fabrics. The physical characterization of the developed fabrics revealed a regular arrangement of fibers, consequently the uniform thickness of the fabric with no distortion on fiber surfaces due to the recycling operation of cotton waste. The developed fabrics also demonstrated a high softness index and low compression and bending average rigidity compared to the commercial fabric with similar thickness. The heat protection performance revealed an increase in fabric conductive and radiative heat resistance with increasing the amount of recycled cotton fiber in the fabrics. The inherent thermal resistance of cotton fiber and the low inter-fiber spacing because of their uniform orientation in the fabric lead to the high thermal resistance of developed fabrics. In the case of fabric air permeability concerning the clothing thermal comfort, no significant difference in breathability was observed among the test specimens. Besides, the moisture management profile of developed fabrics indicated the capability to create favorable thermal comfort within the clothing-skin microenvironment because of improved liquid transportation and diffusion of perspiration vapor through the fabric.
Publisher
Springer Science and Business Media LLC
Subject
Marketing,Strategy and Management,Materials Science (miscellaneous),Cultural Studies,Social Psychology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献