Analyzing genderless fashion trends of consumers’ perceptions on social media: using unstructured big data analysis through Latent Dirichlet Allocation-based topic modeling

Author:

Kim HyojungORCID,Cho Inho,Park MinjungORCID

Abstract

AbstractAfter the development of Web 2.0 and social networks, analyzing consumers’ responses and opinions in real-time became profoundly important to gain business insights. This study aims to identify consumers’ preferences and perceptions of genderless fashion trends by text-mining, Latent Dirichlet Allocation-based topic modeling, and time-series linear regression analysis. Unstructured text data from consumer-posted sources, such as blogs and online communities, were collected from January 1, 2018 to December 31, 2020. We examined 9722 posts that included the keyword “genderless fashion” with Python 3.7 software. Results showed that consumers were interested in fragrances, fashion, and beauty brands and products. In particular, 18 topics were extracted: 13 were classified as fashion categories and 5 were derived from beauty and fragrance sectors. Examining the genderless fashion trend development among consumers from 2018 to 2020, “perfume and scent” was revealed as the hot topic, whereas “bags,” “all-in-one skin care,” and “set-up suit” were cold topics, declining in popularity among consumers. The findings contribute to contemporary fashion trends and provide in-depth knowledge about consumers’ perceptions using big data analysis methods and offer insights into product development strategies.

Publisher

Springer Science and Business Media LLC

Subject

Marketing,Strategy and Management,Materials Science (miscellaneous),Cultural Studies,Social Psychology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3