Abstract
Abstract
Background
Opinions seem somewhat divided when considering the effect of artificial intelligence (AI) on medical imaging. The aim of this study was to characterise viewpoints presented online relating to the impact of AI on the field of radiology and to assess who is engaging in this discourse.
Methods
Two search methods were used to identify online information relating to AI and radiology. Firstly, 34 terms were searched using Google and the first two pages of results for each term were evaluated. Secondly, a Rich Search Site (RSS) feed evaluated incidental information over 3 weeks. Webpages were evaluated and categorized as having a positive, negative, balanced, or neutral viewpoint based on study criteria.
Results
Of the 680 webpages identified using the Google search engine, 248 were deemed relevant and accessible. 43.2% had a positive viewpoint, 38.3% a balanced viewpoint, 15.3% a neutral viewpoint, and 3.2% a negative viewpoint. Peer-reviewed journals represented the most common webpage source (48%), followed by media (29%), commercial sources (12%), and educational sources (8%). Commercial webpages had the highest proportion of positive viewpoints (66%). Radiologists were identified as the most common author group (38.9%). The RSS feed identified 177 posts of which were relevant and accessible. 86% of posts were of media origin expressing positive viewpoints (64%).
Conclusion
The overall opinion of the impact of AI on radiology presented online is a positive one. Consistency across a range of sources and author groups exists. Radiologists were significant contributors to this online discussion and the results may impact future recruitment.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference34 articles.
1. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The MIT Press, Cambridge
2. Pesapane F, Codari M, Sardanelli F (2018) Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2:35. https://doi.org/10.1186/s41747-018-0061-6
3. Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118. https://doi.org/10.1038/nature21056
4. McDonald RJ, Schwartz KM, Eckel LJ et al (2015) The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol 22(9):1191–1198. https://doi.org/10.1016/j.acra.2015.05.007
5. Wood L (2021) The worldwide diagnostic imaging industry is expected to reach $48.5 Billion by 2027. BusinessWire A Berkshire Hathaway Company. ResearchandMarkets.com. https://www.businesswire.com/news/home/20211209005945/en/The-Worldwide-Diagnostic-Imaging-Industry-is-Expected-to-Reach-48.5-Billion-by-2027---ResearchAndMarkets.com#:~:text=Amid%20the%20COVID%2D19%20crisis,the%20analysis%20period%202020%2D2027.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献