Accuracy and applicability of dual-energy computed tomography in quantifying vertebral bone marrow adipose tissue compared with magnetic resonance imaging

Author:

Liu Zhenghua,Huang Dageng,Zhang Yuting,Chang Rong,Zhang Xiaoyue,Jiang Yonghong,Ma Xiaowen

Abstract

Abstract Objectives To evaluate the accuracy of dual-energy computed tomography (DECT) in quantifying bone marrow adipose tissue (BMAT) and its applicability in the study of osteoporosis (OP). Methods A total of 83 patients with low back pain (59.77 ± 7.46 years, 30 males) were enrolled. All patients underwent lumbar DECT and magnetic resonance imaging (MRI) scanning within 48 h, and the vertebral fat fraction (FF) was quantitatively measured, recorded as DECT-FF and MRI-FF. A standard quantitative computed tomography (QCT) phantom was positioned under the waist during DECT procedure to realize the quantization of bone mineral density (BMD). The intraclass correlation coefficient (ICC) and Bland–Altman method was used to evaluate the agreement between DECT-FF and MRI-FF. The Pearson test was used to study the correlation between DECT-FF, MRI-FF, and BMD. With BMD as a gold standard, the diagnostic efficacy of DECT-FF and MRI-FF in different OP degrees was compared by receiver operating characteristic (ROC) curve and DeLong test. Results The values of DECT-FF and MRI-FF agreed well (ICC = 0.918). DECT-FF and MRI-FF correlated with BMD, with r values of −0.660 and −0.669, respectively (p < 0.05). In the diagnosis of OP and osteopenia, the areas under curve (AUC) of DECT-FF was, respectively, 0.791 and 0.710, and that of MRI-FF was 0.807 and 0.708, and there was no significant difference between AUCs of two FF values (with Z values of 0.503 and 0.066, all p > 0.05). Conclusion DECT can accurately quantify the BMAT of vertebrae and has the same applicability as MRI in the study of OP.

Funder

Key Research and Development Projects of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3