Machine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell renal cell carcinoma: an exploratory and comparative study

Author:

Xv Yingjie,Lv Fajin,Guo Haoming,Zhou Xiang,Tan Hao,Xiao Mingzhao,Zheng YinengORCID

Abstract

Abstract Purpose To investigate the predictive performance of machine learning-based CT radiomics for differentiating between low- and high-nuclear grade of clear cell renal cell carcinomas (CCRCCs). Methods This retrospective study enrolled 406 patients with pathologically confirmed low- and high-nuclear grade of CCRCCs according to the WHO/ISUP grading system, which were divided into the training and testing cohorts. Radiomics features were extracted from nephrographic-phase CT images using PyRadiomics. A support vector machine (SVM) combined with three feature selection algorithms such as least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE), and ReliefF was performed to determine the most suitable classification model, respectively. Clinicoradiological, radiomics, and combined models were constructed using the radiological and clinical characteristics with significant differences between the groups, selected radiomics features, and a combination of both, respectively. Model performance was evaluated by receiver operating characteristic (ROC) curve, calibration curve, and decision curve analyses. Results SVM-ReliefF algorithm outperformed SVM-LASSO and SVM-RFE in distinguishing low- from high-grade CCRCCs. The combined model showed better prediction performance than the clinicoradiological and radiomics models (p < 0.05, DeLong test), which achieved the highest efficacy, with an area under the ROC curve (AUC) value of 0.887 (95% confidence interval [CI] 0.798–0.952), 0.859 (95% CI 0.748–0.935), and 0.828 (95% CI 0.731–0.929) in the training, validation, and testing cohorts, respectively. The calibration and decision curves also indicated the favorable performance of the combined model. Conclusion A combined model incorporating the radiomics features and clinicoradiological characteristics can better predict the WHO/ISUP nuclear grade of CCRCC preoperatively, thus providing effective and noninvasive assessment.

Funder

chongqing municipal health committee foundation project

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3