Efficient structured reporting in radiology using an intelligent dialogue system based on speech recognition and natural language processing

Author:

Jorg TobiasORCID,Kämpgen Benedikt,Feiler Dennis,Müller Lukas,Düber Christoph,Mildenberger Peter,Jungmann Florian

Abstract

Abstract Background Structured reporting (SR) is recommended in radiology, due to its advantages over free-text reporting (FTR). However, SR use is hindered by insufficient integration of speech recognition, which is well accepted among radiologists and commonly used for unstructured FTR. SR templates must be laboriously completed using a mouse and keyboard, which may explain why SR use remains limited in clinical routine, despite its advantages. Artificial intelligence and related fields, like natural language processing (NLP), offer enormous possibilities to facilitate the imaging workflow. Here, we aimed to use the potential of NLP to combine the advantages of SR and speech recognition. Results We developed a reporting tool that uses NLP to automatically convert dictated free text into a structured report. The tool comprises a task-oriented dialogue system, which assists the radiologist by sending visual feedback if relevant findings are missed. The system was developed on top of several NLP components and speech recognition. It extracts structured content from dictated free text and uses it to complete an SR template in RadLex terms, which is displayed in its user interface. The tool was evaluated for reporting of urolithiasis CTs, as a use case. It was tested using fictitious text samples about urolithiasis, and 50 original reports of CTs from patients with urolithiasis. The NLP recognition worked well for both, with an F1 score of 0.98 (precision: 0.99; recall: 0.96) for the test with fictitious samples and an F1 score of 0.90 (precision: 0.96; recall: 0.83) for the test with original reports. Conclusion Due to its unique ability to integrate speech into SR, this novel tool could represent a major contribution to the future of reporting.

Funder

Bundesministerium für Bildung und Forschung

Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3