Radiomics model to classify mammary masses using breast DCE-MRI compared to the BI-RADS classification performance

Author:

Debbi Kawtar,Habert PaulORCID,Grob Anaïs,Loundou Anderson,Siles Pascale,Bartoli Axel,Jacquier Alexis

Abstract

Abstract Background Recent advanced in radiomics analysis could help to identify breast cancer among benign mammary masses. The aim was to create a radiomics signature using breast DCE-MRI extracted features to classify tumors and to compare the performances with the BI-RADS classification. Material and methods From September 2017 to December 2019 images, exams and records from consecutive patients with mammary masses on breast DCE-MRI and available histology from one center were retrospectively reviewed (79 patients, 97 masses). Exclusion criterion was malignant uncertainty. The tumors were split in a train-set (70%) and a test-set (30%). From 14 kinetics maps, 89 radiomics features were extracted, for a total of 1246 features per tumor. Feature selection was made using Boruta algorithm, to train a random forest algorithm on the train-set. BI-RADS classification was recorded from two radiologists. Results Seventy-seven patients were analyzed with 94 tumors, (71 malignant, 23 benign). Over 1246 features, 17 were selected from eight kinetic maps. On the test-set, the model reaches an AUC = 0.94 95 CI [0.85–1.00] and a specificity of 33% 95 CI [10–70]. There were 43/94 (46%) lesions BI-RADS4 (4a = 12/94 (13%); 4b = 9/94 (10%); and 4c = 22/94 (23%)). The BI-RADS score reached an AUC = 0.84 95 CI [0.73–0.95] and a specificity of 17% 95 CI [3–56]. There was no significant difference between the ROC curves for the model or the BI-RADS score (p = 0.19). Conclusion A radiomics signature from features extracted using breast DCE-MRI can reach an AUC of 0.94 on a test-set and could provide as good results as BI-RADS to classify mammary masses.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3