The added value of digital breast tomosynthesis in improving diagnostic performance of BI-RADS categorization of mammographically indeterminate breast lesions

Author:

Basha Mohammad Abd AlkhalikORCID,Safwat Hadeer K.,Alaa Eldin Ahmed M.,Dawoud Hitham A.,Hassanin Ali M.

Abstract

Abstract Background Mammographic findings are seen more clearly in tomographic images with consequent improvement of Breast Imaging Reporting and Data System (BI-RADS) in categorization of indeterminate breast lesions. This study aimed to evaluate the added value of digital breast tomosynthesis (DBT) to BI-RADS classification in categorization of indeterminate breast lesions after digital mammography (DM) as an initial approach. Methods and results We prospectively evaluated 296 women with BI-RADS indeterminate breast lesions (BI-RADS 0, 3, and 4) by DM between January 2018 and October 2019. All patients underwent DBT. Two radiologists evaluated lesions and assigned a BI-RADS category to each lesion according to BI-RADS lexicon 2013 classification using DM, DBT, and combined DM and DBT. The results were compared in terms of main radiological features, diagnostic performance, and BI-RADS classification using histopathology as the reference standard. A total of 355 lesions were detected on DBT and 318 lesions on DM. Thirty-seven lesions were detected by DBT and not seen by DM. The final diagnoses of 355 lesions were 58.3% benign and 41.7% malignant. In comparison to DM, DBT produced 31.5% upgrading and 35.2% downgrading of BI-RADS scoring of breast lesions. DBT reduced number of BI-RADS 3 and 4, compared to DM. All upgraded BI-RADS 4 were malignant. The combination of DBT and DM significantly increased the performance of BI-RADS in the diagnosis of indeterminate breast lesions versus DM or DBT alone (p < 0.001). Conclusion Adding DBT to BI-RADS improves its diagnostic performance in detection and characterization of mammography indeterminate breast lesions.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3